Skip to main content Accessibility help
×
Home

EXPANSION CONSTANTS AND HYPERBOLIC EMBEDDINGS OF FINITE GRAPHS

  • Tae Hattori (a1) and Atsushi Kasue (a2)

Abstract

In this paper, we study a finite connected graph which admits a quasi-monomorphism to hyperbolic spaces and give a geometric bound for the Cheeger constants in terms of the volume, an upper bound of the degree, and the quasi-monomorphism.

Copyright

References

Hide All
1.Alexander, S. B. and Bishop, R. L., Gauss equation and injectivity radii for subspaces in spaces of curvature bounded above. Geom. Dedicata 117 2006, 6584.
2.Alon, N. and Milman, V. D., 𝜆1, isoperimetric inequalities for graphs and superconcentrators. J. Combin. Theory Ser. B 38 1985, 7888.
3.Benjamini, I., Expanders are not hyperbolic. Israel J. Math. 108 1998, 3336.
4.Benjamini, I. and Schramm, O., Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. Math. 126 1996, 565587.
5.Bonk, M. and Schramm, O., Embedding of Gromov hyperbolic spaces. Geom. Funct. Anal. 10 2000, 266306.
6.Bühler, T. and Hein, M., Spectral clustering based on the graph p-Laplacian. Proc. 26th Int. Conf. Machine Learning, Omnipress (Montreal, 2009), 8188.
7.Chandra, A. K., Raghavan, P., Ruzzo, W. L., Smolensky, R. and Tiwari, P., The electrical resistance of a graph captures its commute and cover times. Comput. Complexity 6 1996–1997, 312340.
8.Chavel, I., Riemannian Geometry: A Modern Introduction, 2nd edn, Cambridge University Press (New York, 2006).
9.Coulhon, T., Espace de Lipschitz et inegalités de Poincaré. J. Funct. Anal. 136 1996, 81113.
10.Coulhon, T. and Koskela, P., Geometric interpretations of L p-Poincaré inequalities on graphs with polynominal volume growth. Milan J. Math. 72 2004, 209248.
11.Daneshgar, A., Javadi, R. and Miclo, L., On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes. Stochastic Process. Appl. 122 2012, 17481776.
12.Dodziuk, J., Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc. 284 1984, 787794.
13.Duffin, R. J., The extremal length of a network. J. Math. Anal. Appl. 5 1962, 200215.
14.Hattori, T. and Kasue, A., Functions with finite Dirichlet sum and compactifications of infinite graphs. In Probabilistic Approach to Geometry (Kyoto, 2008) (Advanced Studies in Pure Mathematics 57), Mathematical Society of Japan (Tokyo, 2010), 141153.
15.Hattori, T. and Kasue, A., Functions with finite Dirichlet sums of order p and quasi-monomorphisms of infinite graphs. Nagoya Math. J. 207 2012, 95138.
16.Kasue, A., Convergence of finite metric graphs and energy forms. Rev. Mat. Iberoam. 26 2010, 367448.
17.Lee, J. R., Gharan, S. O. and Trevisan, L., Multi-way spectral partitioning and higher-order Cheeger inequalitites. In Proceedings of the 44th Annual Symposium on Theory of Computing (STOC), ACM (New York, 2012), 11171130.
18.Mantuano, T., Discretization of compact Riemannian manifolds applied to the spectrum of Laplacian. Ann. Global Anal. Geom. 27 2005, 3346.
19.Matoušec, J., On embedding expanders into p spaces. Israel J. Math. 102 1997, 189197.
20.Miclo, L., On eigenfunctions of Markov processes on trees. Probab. Theory Related Fields 142 2008, 561594.
21.Nakamura, T. and Yamasaki, M., Generalized extremal length of an infinite network. Hiroshima Math. J. 6 1976, 95111.
22.Tanaka, M., Multi-way expansion constants and partitions of a graph. Preprint, 2011,arXiv:1112.3434.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed