Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-v9xhf Total loading time: 0.377 Render date: 2022-05-22T14:59:50.631Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Pulsed-laser hyperdoping and surface texturing for photovoltaics

Published online by Cambridge University Press:  10 June 2011

Meng-Ju Sher
Affiliation:
Harvard University, Cambridge, MA 02138, USA; sher@physics.harvard.edu
Mark T. Winkler
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA; mwinkler@mit.edu
Eric Mazur
Affiliation:
Harvard University, Cambridge, MA 02138, USA; mazur@physics.harvard.edu
Get access

Abstract

We describe two ways in which pulsed lasers can be used to increase efficiency in photovoltaic devices. First, pulsed-laser hyperdoping can introduce dopants into a semiconductor at non-equilibrium concentrations, which creates an intermediate band in the bandgap of the material and modifies the absorption coefficient. Second, pulsed-laser irradiation can enhance geometric light trapping by increasing surface roughness. Hyperdoping in silicon enables absorption of photons to wavelengths of at least 2.5 μm, while texturing enhances the absorptance to near unity at all absorbing wavelengths. This article reviews both effects and comments on outstanding questions and challenges in applying each to increasing the efficiency of photovoltaic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P., Yalisove, S.M., MRS Bull. 31, 626 (2006).CrossRefGoogle Scholar
2.Wu, C., Crouch, C.H., Zhao, L., Carey, J.E., Younkin, R., Levinson, J.A., Mazur, E., Farrell, R.M., Gothoskar, P., Karger, A., Applied Physics Letters 78, 1850 (2001).CrossRefGoogle Scholar
3.Kim, T.G., Warrender, J.M., Aziz, M.J., Appl. Phys. Lett. 88, 3 (2006).Google Scholar
4.Bob, B.P., Kohno, A., Charnvanichborikarn, S., Warrender, J.M., Umezu, I., Tabbal, M., Williams, J.S., Aziz, M.J., Journal of Applied Physics 107, 123506 (2010).CrossRefGoogle Scholar
5.Sheehy, M.A., Tull, B.R., Friend, C.M., Mazur, E., Mater. Sci. Eng., B 137, 289 (2007).CrossRefGoogle Scholar
6.Crouch, C.H., Carey, J.E., Warrender, J.M., Aziz, M.J., Mazur, E., Genin, F.Y., Applied Physics Letters 84, 1850 (2004).CrossRefGoogle Scholar
7.Halbwax, A., Sarnet, T., Delaporte, P., Sentis, A., Etienne, H., Torregrosa, F., Vervisch, V., Perichaud, I., Martinuzzi, S., Thin Solid Films 516, 6791 (2008).CrossRefGoogle Scholar
8.Iyengar, V.V., Nayak, B.K., Gupta, M.C., Sol. Energy Mater. Sol. Cells 94, 2251 (2010).CrossRefGoogle Scholar
9.White, C.W., Wilson, S.R., Appleton, B.R., Young, F.W., J. Appl. Phys. 51, 738 (1980).CrossRefGoogle Scholar
10.Reitano, R., Smith, P.M., Aziz, M.J., J. Appl. Phys. 76, 1518 (1994).CrossRefGoogle Scholar
11.Luque, A., Marti, A., Adv. Mater. 22, 160 (2010).CrossRefGoogle Scholar
12.Liu, Y., Liu, S., Wang, Y., Feng, G., Zhu, J., Zhao, L., Laser Physics 18, 1148 (2008).CrossRefGoogle Scholar
13.Zorba, V., Boukos, N., Zergioti, I., Fotakis, C., Appl. Opt. 47, 1846 (2008).CrossRefGoogle Scholar
14.Bassam, M.A., Parvin, P., Sajad, B., Moghimi, A., Coster, H., Appl. Surf. Sci. 254, 2621 (2008).CrossRefGoogle Scholar
15.Affolter, K., Luthy, W., Vonallmen, M., Appl. Phys. Lett. 33, 185 (1978).CrossRefGoogle Scholar
16.Fairfiel, J.M., Schwuttk, G.H., Solid-State Electron. 11, 1175 (1968).CrossRefGoogle Scholar
17.Carey, P.G., Sigmon, T.W., Press, R.L., Fahlen, T.S., IEEE Electron Device Lett. 6, 291 (1985).CrossRefGoogle Scholar
18.Carey, P.G., Bezjian, K., Sigmon, T.W., Gildea, P., Magee, T.J., IEEE Electron Device Lett. 7, 440 (1986).CrossRefGoogle Scholar
19.Tabbal, M., Kim, T., Woolf, D.N., Shin, B., Aziz, M.J., Appl. Phys. A 98, 589 (2010).CrossRefGoogle Scholar
20.Fogarassy, E., Stuck, R., Grob, J.J., Siffert, P., J. Appl. Phys. 52, 1076 (1981).CrossRefGoogle Scholar
21.Kim, T., Alberi, K., Dubon, O.D., Aziz, M.J., Narayanamurti, V., J. Appl. Phys. 104, 113722 (2008).CrossRefGoogle Scholar
22.Yu, K.M., Walukiewicz, W., Wu, J., Shan, W., Beeman, J.W., Scarpulla, M.A., Dubon, O.D., Becla, P., Phys. Rev. Lett. 91, 4 (2003).Google Scholar
23.Yu, K.M., Walukiewicz, W., Wu, J., Shan, W., Scarpulla, M.A., Dubon, O.D., Beeman, J.W., Becla, P., Phys. Status Solidi B-Basic Res. 241, 660 (2004).CrossRefGoogle Scholar
24.Yu, K.M., Walukiewicz, W., Ager, J.W., Bour, D., Farshchi, R., Dubon, O.D., Li, S.X., Sharp, I.D., Haller, E.E., Applied Physics Letters 88, 3 (2006).Google Scholar
25.Sundaram, S.K., Mazur, E., Nat. Mater. 1, 217 (2002).CrossRefGoogle Scholar
26.Lompre, L.A., Liu, J.M., Kurz, H., Bloembergen, N., Appl. Phys. Lett. 43, 168 (1983).CrossRefGoogle Scholar
27.Cavalleri, A., Sokolowski-Tinten, K., Bialkowski, J., Schreiner, M., von der Linde, D., J. Appl. Phys. 85, 3301 (1999).CrossRefGoogle Scholar
28.Kittl, J.A., Sanders, P.G., Aziz, M.J., Brunco, D.P., Thompson, M.O., Acta Mater. 48, 4797 (2000).CrossRefGoogle Scholar
29.Liu, P.L., Yen, R., Bloembergen, N., Hodgson, R.T., Appl. Phys. Lett. 34, 864 (1979).CrossRefGoogle Scholar
30.Hull, R., Ed., Properties of Crystalline Silicon (The Institution of Electrical Engineers, London, 1999).Google Scholar
31.Emel’yanov, V.I., Babak, D.V., Appl. Phys. A 74, 797 (2002).CrossRefGoogle Scholar
32.Aziz, M.J., White, C.W., Phys. Rev. Lett. 57, 2675 (1986).CrossRefGoogle Scholar
33.Hoglund, D.E., Thompson, M.O., Aziz, M.J., Phys. Rev. B 58, 189 (1998).CrossRefGoogle Scholar
34.Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983).CrossRefGoogle Scholar
35.Carlson, R.O., Hall, R.N., Pell, E.M., J. Phys. Chem. Solids 8, 81 (1959).CrossRefGoogle Scholar
36.Korfiatis, D.P., Thoma, K.A.T., Vardaxoglou, J.C., J. Phys. D: Appl. Phys. 40, 6803 (2007).CrossRefGoogle Scholar
37.Bonse, J., Baudach, S., Kruger, J., Kautek, W., Lenzner, M., Appl. Phys. A 74, 19 (2002).CrossRefGoogle Scholar
38.Winkler, M.T., PhD dissertation, Harvard University, Cambridge, MA (2009).Google Scholar
39.Crouch, C.H., Carey, J.E., Shen, M., Mazur, E., Genin, F.Y., Appl. Phys. A 79, 1635 (2004).CrossRefGoogle Scholar
40.Vydyanath, H.R., Lorenzo, J.S., Kroger, F.A., J. Appl. Phys. 49, 5928 (1978).CrossRefGoogle Scholar
41.Janzen, E., Grimmeiss, H.G., Lodding, A., Deline, C., J. Appl. Phys. 53, 7367 (1982).CrossRefGoogle Scholar
42.Sheehy, M.A., Winston, L., Carey, J.E., Friend, C.A., Mazur, E., Chem. Mater. 17, 3582 (2005).CrossRefGoogle Scholar
43.Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A., Friend, C.M., J. Appl. Phys. 93, 2626 (2003).CrossRefGoogle Scholar
44.Tull, B.R., Winkler, M.T., Mazur, E., Appl. Phys. A 96, 327 (2009).CrossRefGoogle Scholar
45.Janzen, E., Stedman, R., Grossmann, G., Grimmeiss, H.G., Phys. Rev. B 29, 1907 (1984).CrossRefGoogle Scholar
46.Carey, J.E., Crouch, C.H., Shen, M.Y., Mazur, E., Opt. Lett. 30, 1773 (2005).CrossRefGoogle Scholar
47.Thomas, G.A., Capizzi, M., Derosa, F., Bhatt, R.N., Rice, T.M., Phys. Rev. B 23, 5472 (1981).CrossRefGoogle Scholar
48.Myers, R.A., Farrell, R., Karger, A.M., Carey, J.E., Mazur, E., Appl. Opt. 45, 8825 (2006).CrossRefGoogle Scholar
49.Huang, Z.H., Carey, J.E., Liu, M.G., Guo, X.Y., Mazur, E., Campbell, J.C., Applied Physics Letters 89, (2006).Google Scholar
50.Schroder, D.K., Thomas, R.N., Swartz, J.C., IEEE Trans. Electron Dev. 25, 254 (1978).CrossRefGoogle Scholar
51.Zanatta, A.R., Chambouleyron, I., Phys. Rev. B 53, 3833 (1996).CrossRefGoogle Scholar
52.Wolf, M., Proc. IRE 48, 1246 (1960).CrossRefGoogle Scholar
53.Keevers, M.J., Green, M.A., J. Appl. Phys. 75, 4022 (1994).CrossRefGoogle Scholar
54.Landsberg, P.T., Recombination in Semiconductors (Cambridge University Press, UK, 2003).Google Scholar
55.Luque, A., Marti, A., Antolin, E., Tablero, C., Physica B 382, 320 (2006).CrossRefGoogle Scholar
56.Luque, A., Marti, A., Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
57.Shockley, W., Queisser, H.J., J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
58.Winkler, M.T., Recht, D., Sher, M.J., Said, A.J., Mazur, E., Aziz, M.J., Phys. Rev. Lett. 106, 178701 (2011).CrossRefGoogle Scholar
59.Antolin, E., Marti, A., Olea, J., Pastor, D., Gonzalez-Diaz, G., Martil, I., Luque, A., Applied Physics Letters 94, 042115 (2009).CrossRefGoogle Scholar
60.Newman, B.K., Sullivan, J.T., Winkler, M.T., Sher, M.J., Marcus, M.A., Fakra, S., Smith, M.J., Gradecak, S., Mazur, E., Buonassisi, T., Proc. 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.Google Scholar
61.Mo, Y., Bazant, M.Z., Kaxiras, E., Phys. Rev. B 70, 10 (2004).CrossRefGoogle Scholar
62.Sipe, J.E., Young, J.F., Preston, J.S., Vandriel, H.M., Phys. Rev. B 27, 1141 (1983).CrossRefGoogle Scholar
63.Young, J.F., Preston, J.S., Vandriel, H.M., Sipe, J.E., Phys. Rev. B 27, 1155 (1983).CrossRefGoogle Scholar
64.Young, J.F., Sipe, J.E., Vandriel, H.M., Phys. Rev. B 30, 2001 (1984).CrossRefGoogle Scholar
65.Lorazo, P., Lewis, L.J., Meunier, M., Phys. Rev. B 73, 22 (2006).CrossRefGoogle Scholar
66.Diebold, E.D., Mack, N.H., Doom, S.K., Mazur, E., Langmuir 25, 1790 (2009).CrossRefGoogle Scholar
67.Her, T.H., Finlay, R.J., Wu, C., Deliwala, S., Mazur, E., Appl. Phys. Lett. 73, 1673 (1998).CrossRefGoogle Scholar
68.Her, T.H., Finlay, R.J., Wu, C., Mazur, E., Appl. Phys. A 70, 383 (2000).CrossRefGoogle Scholar
69.Shen, M.Y., Crouch, C.H., Carey, J.E., Mazur, E., Appl. Phys. Lett. 85, 5694 (2004).CrossRefGoogle Scholar
70.Tull, B.R., PhD dissertation, Harvard University, Cambridge, MA (2007).Google Scholar
71.Branz, H.M., Yost, V.E., Ward, S., Jones, K.M., To, B., Stradins, P., Applied Physics Letters 94, 3 (2009).CrossRefGoogle Scholar
72.Younkin, R., PhD dissertation, Harvard University, Cambridge, MA (2001).Google Scholar
73.Nayak, B.K., Iyengar, V.V., Gupta, M.C., Progress in Photovoltaics: Research and Applications, 19 (2011).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pulsed-laser hyperdoping and surface texturing for photovoltaics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Pulsed-laser hyperdoping and surface texturing for photovoltaics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Pulsed-laser hyperdoping and surface texturing for photovoltaics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *