Skip to main content
×
×
Home

Pulsed-laser hyperdoping and surface texturing for photovoltaics

  • Meng-Ju Sher (a1), Mark T. Winkler (a2) and Eric Mazur (a3)
Abstract
Abstract

We describe two ways in which pulsed lasers can be used to increase efficiency in photovoltaic devices. First, pulsed-laser hyperdoping can introduce dopants into a semiconductor at non-equilibrium concentrations, which creates an intermediate band in the bandgap of the material and modifies the absorption coefficient. Second, pulsed-laser irradiation can enhance geometric light trapping by increasing surface roughness. Hyperdoping in silicon enables absorption of photons to wavelengths of at least 2.5 μm, while texturing enhances the absorptance to near unity at all absorbing wavelengths. This article reviews both effects and comments on outstanding questions and challenges in applying each to increasing the efficiency of photovoltaic devices.

Copyright
References
Hide All
1.Tull B.R., Carey J.E., Mazur E., McDonald J.P., Yalisove S.M., MRS Bull. 31, 626 (2006).
2.Wu C., Crouch C.H., Zhao L., Carey J.E., Younkin R., Levinson J.A., Mazur E., Farrell R.M., Gothoskar P., Karger A., Applied Physics Letters 78, 1850 (2001).
3.Kim T.G., Warrender J.M., Aziz M.J., Appl. Phys. Lett. 88, 3 (2006).
4.Bob B.P., Kohno A., Charnvanichborikarn S., Warrender J.M., Umezu I., Tabbal M., Williams J.S., Aziz M.J., Journal of Applied Physics 107, 123506 (2010).
5.Sheehy M.A., Tull B.R., Friend C.M., Mazur E., Mater. Sci. Eng., B 137, 289 (2007).
6.Crouch C.H., Carey J.E., Warrender J.M., Aziz M.J., Mazur E., Genin F.Y., Applied Physics Letters 84, 1850 (2004).
7.Halbwax A., Sarnet T., Delaporte P., Sentis A., Etienne H., Torregrosa F., Vervisch V., Perichaud I., Martinuzzi S., Thin Solid Films 516, 6791 (2008).
8.Iyengar V.V., Nayak B.K., Gupta M.C., Sol. Energy Mater. Sol. Cells 94, 2251 (2010).
9.White C.W., Wilson S.R., Appleton B.R., Young F.W., J. Appl. Phys. 51, 738 (1980).
10.Reitano R., Smith P.M., Aziz M.J., J. Appl. Phys. 76, 1518 (1994).
11.Luque A., Marti A., Adv. Mater. 22, 160 (2010).
12.Liu Y., Liu S., Wang Y., Feng G., Zhu J., Zhao L., Laser Physics 18, 1148 (2008).
13.Zorba V., Boukos N., Zergioti I., Fotakis C., Appl. Opt. 47, 1846 (2008).
14.Bassam M.A., Parvin P., Sajad B., Moghimi A., Coster H., Appl. Surf. Sci. 254, 2621 (2008).
15.Affolter K., Luthy W., Vonallmen M., Appl. Phys. Lett. 33, 185 (1978).
16.Fairfiel J.M., Schwuttk G.H., Solid-State Electron. 11, 1175 (1968).
17.Carey P.G., Sigmon T.W., Press R.L., Fahlen T.S., IEEE Electron Device Lett. 6, 291 (1985).
18.Carey P.G., Bezjian K., Sigmon T.W., Gildea P., Magee T.J., IEEE Electron Device Lett. 7, 440 (1986).
19.Tabbal M., Kim T., Woolf D.N., Shin B., Aziz M.J., Appl. Phys. A 98, 589 (2010).
20.Fogarassy E., Stuck R., Grob J.J., Siffert P., J. Appl. Phys. 52, 1076 (1981).
21.Kim T., Alberi K., Dubon O.D., Aziz M.J., Narayanamurti V., J. Appl. Phys. 104, 113722 (2008).
22.Yu K.M., Walukiewicz W., Wu J., Shan W., Beeman J.W., Scarpulla M.A., Dubon O.D., Becla P., Phys. Rev. Lett. 91, 4 (2003).
23.Yu K.M., Walukiewicz W., Wu J., Shan W., Scarpulla M.A., Dubon O.D., Beeman J.W., Becla P., Phys. Status Solidi B-Basic Res. 241, 660 (2004).
24.Yu K.M., Walukiewicz W., Ager J.W., Bour D., Farshchi R., Dubon O.D., Li S.X., Sharp I.D., Haller E.E., Applied Physics Letters 88, 3 (2006).
25.Sundaram S.K., Mazur E., Nat. Mater. 1, 217 (2002).
26.Lompre L.A., Liu J.M., Kurz H., Bloembergen N., Appl. Phys. Lett. 43, 168 (1983).
27.Cavalleri A., Sokolowski-Tinten K., Bialkowski J., Schreiner M., von der Linde D., J. Appl. Phys. 85, 3301 (1999).
28.Kittl J.A., Sanders P.G., Aziz M.J., Brunco D.P., Thompson M.O., Acta Mater. 48, 4797 (2000).
29.Liu P.L., Yen R., Bloembergen N., Hodgson R.T., Appl. Phys. Lett. 34, 864 (1979).
30.Hull R., Ed., Properties of Crystalline Silicon (The Institution of Electrical Engineers, London, 1999).
31.Emel’yanov V.I., Babak D.V., Appl. Phys. A 74, 797 (2002).
32.Aziz M.J., White C.W., Phys. Rev. Lett. 57, 2675 (1986).
33.Hoglund D.E., Thompson M.O., Aziz M.J., Phys. Rev. B 58, 189 (1998).
34.Thompson M.O., Mayer J.W., Cullis A.G., Webber H.C., Chew N.G., Poate J.M., Jacobson D.C., Phys. Rev. Lett. 50, 896 (1983).
35.Carlson R.O., Hall R.N., Pell E.M., J. Phys. Chem. Solids 8, 81 (1959).
36.Korfiatis D.P., Thoma K.A.T., Vardaxoglou J.C., J. Phys. D: Appl. Phys. 40, 6803 (2007).
37.Bonse J., Baudach S., Kruger J., Kautek W., Lenzner M., Appl. Phys. A 74, 19 (2002).
38.Winkler M.T., PhD dissertation, Harvard University, Cambridge, MA (2009).
39.Crouch C.H., Carey J.E., Shen M., Mazur E., Genin F.Y., Appl. Phys. A 79, 1635 (2004).
40.Vydyanath H.R., Lorenzo J.S., Kroger F.A., J. Appl. Phys. 49, 5928 (1978).
41.Janzen E., Grimmeiss H.G., Lodding A., Deline C., J. Appl. Phys. 53, 7367 (1982).
42.Sheehy M.A., Winston L., Carey J.E., Friend C.A., Mazur E., Chem. Mater. 17, 3582 (2005).
43.Younkin R., Carey J.E., Mazur E., Levinson J.A., Friend C.M., J. Appl. Phys. 93, 2626 (2003).
44.Tull B.R., Winkler M.T., Mazur E., Appl. Phys. A 96, 327 (2009).
45.Janzen E., Stedman R., Grossmann G., Grimmeiss H.G., Phys. Rev. B 29, 1907 (1984).
46.Carey J.E., Crouch C.H., Shen M.Y., Mazur E., Opt. Lett. 30, 1773 (2005).
47.Thomas G.A., Capizzi M., Derosa F., Bhatt R.N., Rice T.M., Phys. Rev. B 23, 5472 (1981).
48.Myers R.A., Farrell R., Karger A.M., Carey J.E., Mazur E., Appl. Opt. 45, 8825 (2006).
49.Huang Z.H., Carey J.E., Liu M.G., Guo X.Y., Mazur E., Campbell J.C., Applied Physics Letters 89, (2006).
50.Schroder D.K., Thomas R.N., Swartz J.C., IEEE Trans. Electron Dev. 25, 254 (1978).
51.Zanatta A.R., Chambouleyron I., Phys. Rev. B 53, 3833 (1996).
52.Wolf M., Proc. IRE 48, 1246 (1960).
53.Keevers M.J., Green M.A., J. Appl. Phys. 75, 4022 (1994).
54.Landsberg P.T., Recombination in Semiconductors (Cambridge University Press, UK, 2003).
55.Luque A., Marti A., Antolin E., Tablero C., Physica B 382, 320 (2006).
56.Luque A., Marti A., Phys. Rev. Lett. 78, 5014 (1997).
57.Shockley W., Queisser H.J., J. Appl. Phys. 32, 510 (1961).
58.Winkler M.T., Recht D., Sher M.J., Said A.J., Mazur E., Aziz M.J., Phys. Rev. Lett. 106, 178701 (2011).
59.Antolin E., Marti A., Olea J., Pastor D., Gonzalez-Diaz G., Martil I., Luque A., Applied Physics Letters 94, 042115 (2009).
60.Newman B.K., Sullivan J.T., Winkler M.T., Sher M.J., Marcus M.A., Fakra S., Smith M.J., Gradecak S., Mazur E., Buonassisi T., Proc. 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.
61.Mo Y., Bazant M.Z., Kaxiras E., Phys. Rev. B 70, 10 (2004).
62.Sipe J.E., Young J.F., Preston J.S., Vandriel H.M., Phys. Rev. B 27, 1141 (1983).
63.Young J.F., Preston J.S., Vandriel H.M., Sipe J.E., Phys. Rev. B 27, 1155 (1983).
64.Young J.F., Sipe J.E., Vandriel H.M., Phys. Rev. B 30, 2001 (1984).
65.Lorazo P., Lewis L.J., Meunier M., Phys. Rev. B 73, 22 (2006).
66.Diebold E.D., Mack N.H., Doom S.K., Mazur E., Langmuir 25, 1790 (2009).
67.Her T.H., Finlay R.J., Wu C., Deliwala S., Mazur E., Appl. Phys. Lett. 73, 1673 (1998).
68.Her T.H., Finlay R.J., Wu C., Mazur E., Appl. Phys. A 70, 383 (2000).
69.Shen M.Y., Crouch C.H., Carey J.E., Mazur E., Appl. Phys. Lett. 85, 5694 (2004).
70.Tull B.R., PhD dissertation, Harvard University, Cambridge, MA (2007).
71.Branz H.M., Yost V.E., Ward S., Jones K.M., To B., Stradins P., Applied Physics Letters 94, 3 (2009).
72.Younkin R., PhD dissertation, Harvard University, Cambridge, MA (2001).
73.Nayak B.K., Iyengar V.V., Gupta M.C., Progress in Photovoltaics: Research and Applications, 19 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 64 *
Loading metrics...

Abstract views

Total abstract views: 334 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th December 2017. This data will be updated every 24 hours.