Skip to main content
×
Home
    • Aa
    • Aa
  • Access
  • Cited by 41
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ihara, Hirotaka Takafuji, Makoto and Kuwahara, Yutaka 2016. Polymer functionalization by luminescent supramolecular gels. Polymer Journal, Vol. 48, Issue. 8, p. 843.


    Thakur, Pooja Tan, Bo and Venkatakrishnan, Krishnan 2016. Multiphase titanium oxide nanomaterial for augmented vis–NIR photon absorption. Solar Energy Materials and Solar Cells, Vol. 152, p. 161.


    Yan, Luting Chan, Kah Howe and Uddin, Ashraf 2016. Dopamine-Induced Growth of Au and Ag Nanoparticles on ITO Substrate and Their Application in PCPDTBT-Based Polymer Solar Cell. Plasmonics,


    Aneesh, P.M. Kumar, C. Ram Reshmi Varma, P.C. Vivek, K. and Namboothiry, Manoj A.G. 2015. Enhancement in Photovoltaic Properties of Plasmonic Nanostructures Incorporated Organic Solar Cells Processed in Air Using P3HT:PCBM as a Model Active Layer. Organic Photonics and Photovoltaics, Vol. 3, Issue. 1,


    Hegmann, Jan Jahn, Rainer Schönau, Steffi Sommer, Nicolas and Löbmann, Peer 2015. SiO2–TiO2 scattering layers prepared by sol–gel processing for light management in thin film solar cells. Journal of Sol-Gel Science and Technology, Vol. 74, Issue. 3, p. 585.


    Krassas, M. Kakavelakis, G. Stylianakis, M. M. Vaenas, N. Stratakis, E. and Kymakis, E. 2015. Efficiency enhancement of organic photovoltaic devices by embedding uncapped Al nanoparticles in the hole transport layer. RSC Adv., Vol. 5, Issue. 88, p. 71704.


    Wen, Wen and Maldonado, Stephen 2015. Nanoelectrochemistry.


    Xie, Keyu Guo, Min and Huang, Haitao 2015. Photonic crystals for sensitized solar cells: fabrication, properties, and applications. J. Mater. Chem. C, Vol. 3, Issue. 41, p. 10665.


    Yakubov, Komiljon Zhanabergenov, Jaksilik Turemuratov, Sharibay and Ernazarov, Usnatdin 2015. Study of plasmonic effect in silicon solar cells with silver nanoparticles. Nanomaterials and Energy, Vol. 4, Issue. 2, p. 105.


    Abdelmoula, Mohamed Sokoloff, Jeffrey Lu, Wen-Tao Close, Thomas Menon, Latika and Richter, Christiaan 2014. Optical properties of titanium dioxide nanotube arrays. Journal of Applied Physics, Vol. 115, Issue. 1, p. 014306.


    Brudieu, Barbara Bris, A. Le Teisseire, J. Guillemot, F. Dantelle, G. Misra, S. Cabarrocas, P. Roca i Sorin, F. and Gacoin, T. 2014. Sol-Gel Route Toward Efficient and Robust Distributed Bragg Reflectors for Light Management Applications. Advanced Optical Materials, Vol. 2, Issue. 11, p. 1105.


    Kakavelakis, George Stratakis, Emmanuel and Kymakis, Emmanuel 2014. Synergetic plasmonic effect of Al and Au nanoparticles for efficiency enhancement of air processed organic photovoltaic devices. Chemical Communications, Vol. 50, Issue. 40, p. 5285.


    Li, X. H. Li, P. C. Hu, D. Z. Schaadt, D. M. and Yu, E. T. 2014. Angular dependence of light trapping in In0.3Ga0.7As/GaAs quantum-well solar cells. Journal of Applied Physics, Vol. 115, Issue. 4, p. 044303.


    Paetzold, U. W. Smeets, M. Meier, M. Bittkau, K. Merdzhanova, T. Smirnov, V. Michaelis, D. Waechter, C. Carius, R. and Rau, U. 2014. Disorder improves nanophotonic light trapping in thin-film solar cells. Applied Physics Letters, Vol. 104, Issue. 13, p. 131102.


    Paetzold, Ulrich W. Lehnen, Stephan Bittkau, Karsten Rau, Uwe and Carius, Reinhard 2014. Nanoscale Observation of Waveguide Modes Enhancing the Efficiency of Solar Cells. Nano Letters, Vol. 14, Issue. 11, p. 6599.


    Park, Hyeongsik Lee, Youn-Jung Ahn, Shihyun Kim, Sunbo and Yi, Junsin 2014. Effect of wet textured glass surface morphology on the haze ratio and aspect ratio for amorphous silicon thin film solar cells. Journal of Renewable and Sustainable Energy, Vol. 6, Issue. 5, p. 053141.


    Rau, Uwe Paetzold, Ulrich W. and Kirchartz, Thomas 2014. Thermodynamics of light management in photovoltaic devices. Physical Review B, Vol. 90, Issue. 3,


    Rourke, Devin Ahn, Sungmo Nardes, Alexandre van de Lagemaat, Jao Kopidakis, Nikos and Park, Wounjhang 2014. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). p. 0147.

    Rourke, Devin Ahn, Sungmo Nardes, Alexandre M. van de Lagemaat, Jao Kopidakis, Nikos and Park, Wounjhang 2014. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices. Journal of Applied Physics, Vol. 116, Issue. 11, p. 114510.


    Shen, Quan Edler, Matthias Griesser, Thomas Knall, Astrid-Caroline Trimmel, Gregor Kern, Wolfgang and Teichert, Christian 2014. Ex situandin situcharacterization of patterned photoreactive thin organic surface layers using friction force microscopy. Scanning, Vol. 36, Issue. 6, p. 590.


    ×

Photon management for photovoltaics

  • E.T. Yu (a1) and J. van de Lagemaat (a2)
  • DOI: http://dx.doi.org/10.1557/mrs.2011.109
  • Published online: 01 June 2011
Abstract
Abstract

Photovoltaics are expected to play an important role in the future energy infrastructure. However, achieving simultaneously high efficiency in both light absorption and carrier collection remains a challenging tradeoff. Photon management, which refers to the engineering of materials and device structures to control the spatial distribution of optical energy, offers a number of promising routes to optimizing this tradeoff. Progress in fabrication of nanostructured materials combined with advances in the understanding of nanophotonic devices has enabled new strategies for photon management in a range of photovoltaic devices. Prominent among these are structures with pronounced surface topography or graded refractive-index profiles that reduce surface reflectivity; materials processing that increases optical absorption in materials such as silicon; incorporation of semiconductor nanostructures that enables simultaneous improvements in optical absorption and photogenerated carrier collection; and coherent light trapping in optical waveguide modes via plasmonic or optical scattering effects. The articles in this issue review some of these emerging directions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Photon management for photovoltaics
      Your Kindle email address
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Photon management for photovoltaics
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Photon management for photovoltaics
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.R.B. Stephens , G.D. Cody , Thin Solid Films 45, 19 (1977).

3.J.I. Gittleman , E.K. Sichel , H.W. Lehmann , R. Widmer , Appl. Phys. Lett. 35, 742 (1979).

4.H.G. Craighead , R.E. Howard , D.M. Tennant , Appl. Phys. Lett. 37, 653 (1980).

5.Z. Yu , H. Gao , W. Wu , H. Ge , S.Y. Chou , J. Vac. Sci. Technol., B 21, 2874 (2003).

6.H. Sai , H. Fujii , K. Arafune , Y. Ohshita , Y. Kanamori , H. Yugami , M. Yamaguchi , Jpn. J. Appl. Phys. 46, 3333 (2007).

7.C.-H. Sun , P. Jiang , B. Jiang , Appl. Phys. Lett. 92, 061112 (2008).

8.H.M. Branz , V.E. Yost , S. Ward , K.M. Jones , B. To , P. Stradins , Appl. Phys. Lett. 94, 231121 (2009).

10.M.L. Kuo , D.J. Poxson , Y.S. Kim , F.W. Mont , L.K. Kim , E.F. Schubert , S.Y. Lin , Opt. Lett. 33, 2527 (2008).

11.S. Koynov , M.S. Brandt , M. Stutzmann , Appl. Phys. Lett. 88, 203107 (2008).

12.H.-C. Yuan , V.E. Yost , M.R. Page , P. Stradins , D.L. Meier , H.M. Branz , Appl. Phys. Lett. 95, 123501 (2009).

13.E. Yablonovitch , J. Opt. Soc. Am. 72, 899 (1982).

14.E. Yablonovitch , G.D. Cody , IEEE Trans. Electron Devices 29, 300 (1982).

15.T.H. Her , R.J. Finlay , C. Wu , S. Deliwala , E. Mazur , Appl. Phys. Lett. 73, 1673 (1998).

16.B.K. Nayak , M.C. Gupta , K.W. Kolasinski , Nanotechnology 18, 195302 (2007).

17.J. Zhao , A. Wang , M.A. Green , F. Ferrazza , Appl. Phys. Lett. 73, 1991 (1998).

18.C. Wu , C.H. Crouch , L. Zhao , J.E. Carey , R. Younkin , J.A. Levinson , E. Mazur , R.M. Farrell , P. Gothoskar , A. Karger , Appl. Phys. Lett. 78, 1850 (2001).

19.K. Peng , Y. Xu , Y. Wu , Y. Yan , S.-T. Lee , J. Zhu , Small 1, 1062 (2005).

20.B. Tian , X. Zheng , T.J. Kempa , Y. Fang , N. Yu , G. Yu , J. Huang , C.M. Lieber , Nature 449, 885 (2007).

21.L. Tsakalakos , J. Balch , J. Fronheiser , B.A. Korevaar , O. Sulima , J. Rand , Appl. Phys. Lett. 91, 233117 (2007).

22.L. Hu , G. Chen , Nano Lett. 7, 3249 (2007).

23.O.L. Muskens , J.G. Rivas , R.E. Algra , E.P.A.M. Bakkers , A. Lagendijk , Nano Lett. 8, 2638 (2008).

24.B.M. Kayes , H.A. Atwater , N.S. Lewis , J. Appl. Phys. 97, 114302 (2005).

25.M.D. Kelzenberg , S.W. Boettcher , J.A. Petykiewicz , D.B. Turner-Evans , M.C. Putnam , E.L. Warren , J.M. Spurgeon , R.M. Briggs , N.S. Lewis , H.A. Atwater , Nat. Mater. 9, 239 (2010).

26.O. Gunawan , S. Guha , Sol. Energy Mater. Sol. Cells 93, 1388 (2009).

27.E. Garnett , P. Yang , Nano Lett. 10, 1082 (2010).

28.W.U. Huynh , J.J. Dittmer , A.P. Alivisatos , Science 295, 2425 (2002).

29.M. Law , L.E. Greene , J.C. Johnson , R. Saykally , P. Yang , Nat. Mater. 4, 455 (2005).

30.J.B. Baxter , E.S. Aydil , Appl. Phys. Lett. 86, 053114 (2005).

31.K. Zhu , T.B. Vinzant , N.R. Neale , A.J. Frank , Nano Lett. 7, 3739 (2007).

33.H.A. Atwater , A. Polman , Nat. Mater. 9, 205 (2010).

34.O. Stenzel , S. Wilbrandt , A. Stendal , U. Beckers , K. Voigtsberger , C. von Borczyskowski , J. Phys. D 28, 2154 (1995).

35.O. Stenzel , A. Stendal , K. Voigtsberger , C. von Borczyskowski , Sol. Energy Mater. Sol. Cells 37, 337 (1995).

36.M. Westphalen , U. Kreibig , J. Rostalski , H. Lüth , D. Meissner , Sol. Energy Mater. Sol. Cells 61 97 (2000).

37.H.R. Stuart , D.G. Hall , Appl. Phys. Lett. 69, 2327 (1996).

38.H.R. Stuart , D.G. Hall , Appl. Phys. Lett. 73, 3815 (1998).

39.H.R. Stuart , D.G. Hall , Phys. Rev. Lett. 80, 5663 (1998).

40.B.J. Soller , D.G. Hall , J. Opt. Soc. Am. A 18, 2577 (2001).

41.B.J. Soller , H.R. Stuart , D.G. Hall , Opt. Lett. 26, 1421 (2001).

42.B.P. Rand , P. Peumans , S.R. Forrest , J. Appl. Phys. 96, 7519 (2004).

43.A.J. Morfa , K.L. Rowlen , T.H. Reilly III, M.J. Romero , J. van de Lagemaat , Appl. Phys. Lett. 92, 013504 (2008).

44.D.M. Schaadt , B. Feng , E.T. Yu , Appl. Phys. Lett. 86, 063106 (2005).

45.S.H. Lim , W. Mar , P. Matheu , D. Derkacs , E.T. Yu , J. Appl. Phys. 101, 104309 (2007).

46.P. Matheu , S.H. Lim , D. Derkacs , C. McPheeters , E.T. Yu , Appl. Phys. Lett. 93, 113108 (2008).

47.D. Derkacs , S.H. Lim , P. Matheu , W. Mar , E.T. Yu , Appl. Phys. Lett. 89, 093103 (2006).

48.K.R. Catchpole , S. Pillai , J. Appl. Phys. 100, 044504 (2006).

49.S. Pillai , K.R. Catchpole , T. Trupke , M.A. Green , J. Appl. Phys. 101, 093105 (2007).

50.D. Derkacs , W.V. Chen , P.M. Matheu , S.H. Lim , P.K.L. Yu , E.T. Yu , Appl. Phys. Lett. 93, 091107 (2008).

51.V.E. Ferry , L.A. Sweatlock , D. Pacifici , H.A. Atwater , Nano Lett. 8, 4391 (2008).

52.K. Nakayama , K. Tanabe , H.A. Atwater , Appl. Phys. Lett. 93, 121904 (2008).

53.S.H. Lim , D. Derkacs , E.T. Yu , J. Appl. Phys. 105, 073101 (2009).

54.C.O. McPheeters , C.J. Hill , S.H. Lim , D. Derkacs , D.Z. Ting , E.T. Yu , J. Appl. Phys. 106, 056101 (2009).

55.V.E. Ferry , M.A. Verschuuren , H.B.T. Li , E. Verhagen , R.J. Walters , R.E.I. Schropp , H.A. Atwater , A. Polman , Opt. Express 18, A237 (2010).

56.Z.F. Yu , A. Raman , S.H. Fan , Proc. Natl. Acad. Sci. U.S.A. 107, 17491 (2010).

57.Z.F. Yu , A. Raman , S. Fan , Opt. Express 18, A366 (2010).

58.J.H. Karp , E.J. Tremblay , J.E. Ford , Opt. Express 18, 1122 (2010).

59.W.G. Van Sark , K.W. Barnham , L.H. Slooff , A.J. Chatten , A. Büchtemann , A. Meyer , S.J. Mc.Cormack , R. Koole , D.J. Farrell , R. Bose , E.E. Bende , A.R. Burgers , T. Budel , J. Quilitz , M. Kennedy , T. Meyer , S.H. Wadman , G.P. van Klink , G. van Koten , A. Meijerink , D. Vanmaekelbergh , Opt. Express 16, 21773 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: