Skip to main content
×
Home
    • Aa
    • Aa

Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies

  • Andrew M. Ritzmann (a1), Ana B. Muñoz-García (a2), Michele Pavone (a2), John A. Keith (a3) and Emily A. Carter (a4)...
Abstract
Abstract

Solid oxide fuel cells (SOFCs) are attractive for clean and efficient electricity generation, but high operating temperatures (Top > 800 °C) limit their widespread usage. Oxygen ion conducting cathode materials (mixed ion-electron conductors, MIECs), such as La1−xSrxCo1−yFeyO3 (LSCF), enable lower Top by reducing cathode polarization losses. Understanding how composition affects oxygen diffusion in LaFeO3 is vitally important for designing high-performance LSCF cathodes. To do this, we employ first-principles density functional theory plus U (DFT+U) calculations to show how lanthanum vacancies in LaFeO3 dramatically change the oxygen diffusion coefficient. Our ab initio results show that A-site substoichiometry is a viable route to increased oxygen diffusion and higher SOFC performance.

Copyright
Corresponding author
Address all correspondence to Emily A. Carter at eac@princeton.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563588 (1993).

2S.B. Adler: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 47914844 (2004).

3B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345352 (2001).

4K. Huang, J. Wan, and J.B. Goodenough: Oxide-ion conducting ceramics for solid oxide fuel cells. J. Mater. Sci. 36, 10931098 (2001).

5D. Rembelski, J.P. Viricelle, L. Combemale, and M. Rieu: Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12, 256264 (2012).

6M.M. Kuklja, E.A. Kotomin, R. Merkle, Y.A. Mastrikov, and J. Maier: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 54435471 (2013).

7Z. Lu, J. Hardy, J. Templeton, and J. Stevenson: Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell. J. Power Sources 198, 9094 (2012).

8T. Striker, J. Ruud, Y. Gao, W. Heward, and C. Steinbruchel: A-site deficiency, phase purity and crystal structure in lanthanum strontium ferrite powders. Solid State Ionics 178, 13261336 (2007).

10M. Pavone, A.M. Ritzmann, and E.A. Carter: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Env. Sci. 4, 49334937 (2011).

11A. Jones and M.S. Islam: Atomic-scale insight into LaFeO3 Perovskite: defect nanoclusters and ion migration. J. Phys. Chem. C 112, 44554462 (2008).

12A.M. Ritzmann, A.B. Muñoz-García, M. Pavone, J.A. Keith, and E.A. Carter: Ab initio DFT + U analysis of oxygen vacancy formation and migration in La1−xSrxFeO3−δ (x = 0, 0.25, 0.50). Chem. Mater., in press (2013) doi: 10.1021/cm401052w.

13Y.A. Mastrikov, R. Merkle, E.A. Kotomin, M.A. Kuklja, and J. Maier: Formation and migration of oxygen vacancies in La1−xSrxCo1−yFeyO3−δ: insight from ab initio calculations and comparison with Ba1−xSrxCo1−yFeyO3−δ. Phys. Chem. Chem. Phys. 15, 911918 (2013).

14J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki: Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−d. J. Solid State Chem. 58, 257266 (1985).

15V.I. Anisimov, J. Zaanen, and O.K. Andersen: Band theory and Mott insulators – Hubbard-U instead of Stoner-I. Phys. Rev. B 44, 943954 (1991).

16N.J. Mosey, P. Liao, and E.A. Carter: Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations. J. Chem. Phys 129, 014103 (2008).

17J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).

18G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).

21T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Fueki, H. Naito, and T. Adachi: Diffusion of oxide ions in LaFeO3 single crystal. J. Solid State Chem. 55, 5053 (1984).

22K.A. Marino and E.A. Carter: First-principles characterization of Ni diffusion kinetics in β-NiAl. Phys. Rev. B 78, 184105 (2008).

23A.B. Muñoz-García, M. Pavone, A.M. Ritzmann, and E.A. Carter: Oxide ion transport in Sr2Fe1.5Mo0.5O6−δ, a mixed ion-electron conductor: new insights from first principles modeling. Phys. Chem. Chem. Phys. 15, 62506259 (2013).

24M. Marezio and P.D. Dernier: The bond lengths in LaFeO3, MRS Bull. 6, 2329 (1971).

25K. Momma and F. Izumi: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653658 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary Materials

Ritzmann Supplementary Material
Supplementary Material

 Word (347 KB)
347 KB
UNKNOWN
Supplementary Materials

Ritzmann Supplementary Material
Image

 Unknown (239 KB)
239 KB
UNKNOWN
Supplementary Materials

Ritzmann Supplementary Material
Image

 Unknown (39 KB)
39 KB