Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T10:34:43.441Z Has data issue: false hasContentIssue false

Cu precipitation on dislocation and interface in quench-aged steel

Published online by Cambridge University Press:  11 September 2012

Qingdong Liu*
Affiliation:
Key Laboratory of Microstructures and Institute of Materials, Shanghai University, Shanghai 200072, P.R. China
Shijin Zhao
Affiliation:
Key Laboratory of Microstructures and Institute of Materials, Shanghai University, Shanghai 200072, P.R. China
*
*Address all correspondence to Qingdong Liu at qdliu@shu.edu.cn
Get access

Abstract

The Cu precipitation in a quench-aged high-strength low-alloy steel is studied at the atomic scale by atom probe tomography and high-resolution transmission electron microscopy. The results indicate that the Cu precipitates greatly correlate with carbides in the aspect of distributional character, i.e., the two phases are prone to coprecipitate on the dislocations and/or interfaces (low angle boundaries of the martensite laths). The crystallographic defects have a significant effect on the sizes, morphology and composition of Cu precipitates with Ni and Mn segregation shell.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vaynman, S., Isheim, D., Prakash Kolli, R., Bhat, S.P., Seidman, D.N., and Fine, M.E.: High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metall. Mater. Trans. A 39, 363 (2008).CrossRefGoogle Scholar
2. Zhang, Z., Liu, C., Wen, Y., Hirata, A., Guo, S., Chen, G., Chen, M., and Chin, B.: Influence of aging and thermomechanical treatments on the mechanical properties of a nanocluster-strengthened ferritic steel. Metall. Mater. Trans. A 43, 351 (2012).CrossRefGoogle Scholar
3. Misra, R.D.K., Jia, Z., O'Malley, R., and Jansto, S.J.: Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: the effect on mechanical properties. Mater. Sci. Eng. A 528, 8772 (2011).Google Scholar
4. Ghosh, A., Mishra, B., Das, S., and Chatterjee, S.: An ultra low carbon Cu bearing steel: influence of thermomechanical processing and aging heat treatment on structure and properties. Mater. Sci. Eng. A 374, 43 (2004).Google Scholar
5. Ghosh, A., Mishra, B., Das, S., and Chatterjee, S.: Microstructure, properties, and age hardening behavior of a thermomechanically processed ultralow-carbon Cu-bearing high-strength steel. Metall. Mater. Trans. A 36, 703 (2005).Google Scholar
6. Saha, A., Jung, J., and Olson, G.: Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II. J. Computer-Aided Mater. Des. 14, 201 (2007).Google Scholar
7. Thompson, S. and Krauss, G.: Copper precipitation during continuous cooling and isothermal aging of a710-type steels. Metall. Mater. Trans. A 27, 1573 (1996).Google Scholar
8. Liu, Q.D., Liu, W.Q., and Xiong, X.Y.: Correlation of Cu precipitation with austenite–ferrite transformation in a continuously cooled multicomponent steel: an atom probe tomography study. J. Mater. Res. 27, 1060 (2012).Google Scholar
9. Liu, Q.D. and Zhao, S.J.: Comparative study on austenite decomposition and Cu precipitation during continuous cooling transformation. Metall. Mater. Trans. A (in press). DOI: 10.1007/s11661-012-1383-2.Google Scholar
10. Mujahid, M., Lis, A.K., Garcia, C.I., and DeArdo, A.J.: HSLA-100 steels: Influence of aging heat treatment on microstructure and properties. J. Mater. Eng. Perform. 7, 247 (1998).Google Scholar
11. Deschamps, A., Militzer, M., and Poole, W.J.: Comparison of precipitation kinetics and strengthening in an Fe-0.8% Cu alloy and a 0.8% Cu-containing low-carbon steel. ISIJ Int. 43, 1826 (2003).Google Scholar
12. Deschamps, A., Militzer, M., and Poole, W.J.: Precipitation kinetics and strengthening of a Fe-0.8 wt% Cu alloy. ISIJ Int. 41, 196 (2001).Google Scholar
13. Takahashi, J., Kawakami, K., and Kobayashi, Y.: Consideration of particle-strengthening mechanism of copper-precipitation-strengthened steels by atom probe tomography analysis. Mater. Sci. Eng. A 535, 144 (2012).CrossRefGoogle Scholar
14. Speich, G.R. and Leslie, W.C.: Tempering of steel. Metall. Trans. 3, 1043 (1972).Google Scholar
15. Duparc, H.A.H., Doole, R.C., Jenkins, M.L., and Barbu, A.: A high-resolution electron microscopy study of copper precipitation in Fe-1.5 wt% Cu under electron irradiation. Philos. Mag. Lett. 71, 325 (1995).Google Scholar
16. Le Bouar, Y.: Atomistic study of the coherency loss during the b.c.c.-9R transformation of small copper precipitates in ferritic steels. Acta Mater. 49, 2661 (2001).Google Scholar
17. Lee, T.H., Kim, Y.O., and Kim, S.J.: Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel. Philos. Mag. 87, 209 (2007).Google Scholar
18. Wang, W., Zhou, B.X., Xu, G., Chu, D.F., and Peng, J.C.: High-resolution electron microscopy characterization of 2H and 9R variant in the ferritic steels containing copper. Mater. Charact. 62, 438 (2011).Google Scholar
19. Monzen, R., Iguchi, M., and Jenkins, M.L.: Structural changes of 9R copper precipitates in an aged Fe-Cu alloy. Philos. Mag. Lett. 80, 137 (2000).Google Scholar
20. Monzen, R., Jenkins, M.L., and Sutton, A.P.: The bcc-to-9R martensitic transformation of Cn precipitates and the relaxation process of elastic strains in an Fe-Cu alloy. Philos. Mag. A 80, 711 (2000).Google Scholar
21. Othen, P.J., Jenkins, M.L., Smith, G.D.W., and Phythian, W.J.: Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni. Philos. Mag. Lett. 64, 383 (1991).CrossRefGoogle Scholar
22. Blackstock, J.J. and Ackland, G.J.: Phase transitions of copper precipitates in Fe-Cu alloys. Philos. Mag. A 81, 2127 (2001).Google Scholar
23. Isheim, D., Kolli, R.P., Fine, M.E., and Seidman, D.N.: An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scripta Mater. 55, 35 (2006).Google Scholar
24. Goodman, S.R., Brenner, S.S., and Low, J.R.: An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: atom probe analyses. Metall. Mater. Trans. B 4, 2371 (1973).Google Scholar
25. Schober, M., Eidenberger, E., Staron, P., and Leitner, H.: Critical consideration of precipitate analysis of Fe-1 at.% Cu using atom probe and small-angle neutron scattering. Micros. Microanal. 17, 26 (2011).Google Scholar
26. Isheim, D., Gagliano, M.S., Fine, M.E., and Seidman, D.N.: Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 54, 841 (2006).Google Scholar
27. Mulholland, M.D. and Seidman, D.N.: Multiple dispersed phases in a high-strength low-carbon steel: an atom-probe tomographic and synchrotron x-ray diffraction study. Scripta Mater. 60, 992 (2009).Google Scholar
28. Nakamichi, H., Yamada, K., Sato, K.: Sub-nanometre elemental analysis of Cu cluster in Fe–Cu–Ni alloy using aberration corrected STEM-EDS. J. Micros. 242, 55 (2011).Google Scholar
29. Kolli, R.P. and Seidman, D.N.: The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel. Acta Mater. 56, 2073 (2008).Google Scholar
30. Schober, M., Eidenberger, E., Leitner, H., Staron, P., Reith, D., and Podloucky, R.: A critical consideration of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe. Appl. Phys. A 99, 697 (2010).Google Scholar
31. Edwards, A.B., Roberts, K.J., Pizzini, S., and Phythian, W.J.: The local atomic environment of Cu and Ni in Fe-Cu-Ni alloys following thermal ageing and neutron irradiation: a study using fluorescence mode x-ray absorption fine-structure spectroscopy. Philos. Mag. A 79, 1295 (1999).Google Scholar
32. Miller, M.K.: APT characterization of solute segregation to individual dislocations. TMS Lett. 1, 19 (2004).Google Scholar
33. Miller, M.K.: Atom probe tomography characterization of solute segregation to dislocations. Micros. Res. Tech. 69, 359 (2006).Google Scholar
34. Miller, M.: Atom probe tomography characterization of solute segregation to dislocations and interfaces. J. Mater. Sci. 41, 7808 (2006).Google Scholar
35. Miller, M.K.: Interface analysis with the three-dimensional atom probe. Surf. Interface Anal. 31, 593 (2001).Google Scholar
36. Blavette, D., Cadel, E., Fraczkiewicz, A., and Menand, A.: Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 2317 (1999).Google Scholar
37. Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Publishing/Plenum Press, New York, NY, 2000).CrossRefGoogle Scholar
38. Ardell, A.J.: Precipitation hardening. Metall. Mater. Trans. A 16, 2131 (1985).Google Scholar
39. Liu, Q.D., Liu, W.Q., Wang, Z.M., and Zhou, B.X.: 3D atom probe characterization of alloy carbides in tempering martenite I. Nucleation. Acta Metall. Sin. 45, 1281 (2009).Google Scholar
40. Liu, Q.D., Liu, W.Q., and Zhao, S.J.: Solute behavior in the initial nucleation of V- and Nb-containing carbide. Metall. Mater. Trans. A 42, 3952 (2011).Google Scholar
41. Hutchinson, B., Hagstrom, J., Karlsson, O., Lindell, D., Tornberg, M., Lindberg, F., and Thuvander, M.: Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater. 59, 5845 (2011).Google Scholar
42. Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).Google Scholar
43. Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater. 55, 5139 (2007).Google Scholar
44. Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55, 5129 (2007).Google Scholar

Liu supplementary movie

Liu supplementary movie

Download Liu supplementary movie(Video)
Video 1.1 MB