Skip to main content Accessibility help
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.7 Render date: 2022-08-14T16:07:05.737Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Engineering semiconducting polymers for efficient charge transport

Published online by Cambridge University Press:  26 June 2015

Scott Himmelberger
Materials Science and Engineering, Stanford University, Stanford, California 94305
Alberto Salleo*
Materials Science and Engineering, Stanford University, Stanford, California 94305
Address all correspondence to Alberto Salleo
Get access


Electronic performance in semiconducting polymers has improved dramatically in recent years owing to a host of novel materials and processing techniques. Our understanding of the factors governing charge transport in these materials has also been enhanced through advancements in both experimental and computational techniques, with disorder appearing to play a central role. In this prospective, we propose that disorder is an inextricable aspect of polymer morphology which need not be highly detrimental to charge transport if it is embraced and planned for. We discuss emerging guidelines for the synthesis of polymers which are resilient to disorder and present our vision for how future advances in processing and molecular design will provide a path toward further increases in charge-carrier mobility.

Polymers/Soft Matter Prospective Articles
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Chen, C.-C., Chang, W.-H., Yoshimura, K., Ohya, K., You, J., Gao, J., Hong, Z., and Yang, Y.: An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 56705677 (2014).CrossRefGoogle ScholarPubMed
2.Knopfmacher, O., Hammock, M.L., Appleton, A.L., Schwartz, G., Mei, J., Lei, T., Pei, J., and Bao, Z.: Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, (2014).CrossRefGoogle ScholarPubMed
3.Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458463 (2013).CrossRefGoogle ScholarPubMed
4.White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., and Sariciftci, N.S.: Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811816 (2013).CrossRefGoogle Scholar
5.Yun, H.-J., Kang, S.-J., Xu, Y., Kim, S.O., Kim, Y.-H., Noh, Y.-Y., and Kwon, S.-K.: Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 73007307 (2014).CrossRefGoogle Scholar
6.Kim, G., Kang, S.-J., Dutta, G.K., Han, Y.-K., Shin, T.J., Noh, Y.-Y., and Yang, C.: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 94779483 (2014).CrossRefGoogle Scholar
7.Kang, I., Yun, H.-J., Chung, D.S., Kwon, S.-K., and Kim, Y.-H.: Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 1489614899 (2013).CrossRefGoogle ScholarPubMed
8.Lee, J., Han, A.-R., Yu, H., Shin, T.J., Yang, C., and Oh, J.H.: Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 135, 95409547 (2013).CrossRefGoogle Scholar
9.Li, J., Zhao, Y., Tan, H.S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Lin, M., Lim, S.H., Zhou, Y., Su, H., and Ong, B.S.: A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2 (2012).CrossRefGoogle ScholarPubMed
10.Luo, C., Kyaw, A.K.K., Perez, L.A., Patel, S., Wang, M., Grimm, B., Bazan, G.C., Kramer, E.J., and Heeger, A.J.: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 27642771 (2014).CrossRefGoogle Scholar
11.Tsumura, A., Koezuka, H., and Ando, T.: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 12101212 (1986).CrossRefGoogle Scholar
12.Dong, H., Fu, X., Liu, J., Wang, Z., and Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 61586183 (2013).CrossRefGoogle Scholar
13.Bao, Z., Dodabalapur, A., and Lovinger, A.J.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 41084110 (1996).CrossRefGoogle Scholar
14.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328333 (2006).CrossRefGoogle Scholar
15.Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., Ying, L., Kramer, E.J., Nguyen, T.-Q., Bazan, G.C., and Heeger, A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 29932998 (2014).CrossRefGoogle Scholar
16.Mei, J., Kim, D.H., Ayzner, A.L., Toney, M.F., and Bao, Z.: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 2013020133 (2011).CrossRefGoogle ScholarPubMed
17.Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dötz, F., Kastler, M., and Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679686 (2009).CrossRefGoogle ScholarPubMed
18.Li, H., Kim, F.S., Ren, G., and Jenekhe, S.A.: High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J. Am. Chem. Soc. 135, 1492014923 (2013).CrossRefGoogle ScholarPubMed
19.Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., and Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384388 (2014).CrossRefGoogle Scholar
20.Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 13191335 (2014).CrossRefGoogle Scholar
21.Nielsen, C.B., Turbiez, M., and McCulloch, I.: Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 25, 18591880 (2013).CrossRefGoogle Scholar
22.Liu, T. and Troisi, A.: Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925933 (2014).CrossRefGoogle Scholar
23.Salleo, A., Chabinyc, M.L., Yang, M.S., and Street, R.A.: Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 43834385 (2002).CrossRefGoogle Scholar
24.Jimison, L.H., Himmelberger, S., Duong, D.T., Rivnay, J., Toney, M.F., and Salleo, A.: Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. J. Polym. Sci. B: Polym. Phys. 51, 611620 (2013).CrossRefGoogle Scholar
25.Kline, R.J., McGehee, M.D., and Toney, M.F.: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222228 (2006).CrossRefGoogle Scholar
26.Koch, F.P.V., Rivnay, J., Foster, S., Müller, C., Downing, J.M., Buchaca-Domingo, E., Westacott, P., Yu, L., Yuan, M., Baklar, M., Fei, Z., Luscombe, C., McLachlan, M.A., Heeney, M., Rumbles, G., Silva, C., Salleo, A., Nelson, J., Smith, P., and Stingelin, N.: The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38, 19781989 (2013).CrossRefGoogle Scholar
27.Himmelberger, S., Vandewal, K., Fei, Z., Heeney, M., and Salleo, A.: Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 71517157 (2014).CrossRefGoogle Scholar
28.Zen, A., Pflaum, J., Hirschmann, S., Zhuang, W., Jaiser, F., Asawapirom, U., Rabe, J.P., Scherf, U., and Neher, D.: Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757764 (2004).CrossRefGoogle Scholar
29.Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., and Fréchet, J.M.J.: Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15, 15191522 (2003).CrossRefGoogle Scholar
30.Li, W., Yang, L., Tumbleston, J.R., Yan, L., Ade, H., and You, W.: Controlling molecular weight of a high efficiency donor–acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv. Mater. 26, 44564462 (2014).CrossRefGoogle ScholarPubMed
31.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 10381044 (2013).CrossRefGoogle ScholarPubMed
32.Duong, D.T., Toney, M.F., and Salleo, A.: Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. . 86, 205205 (2012).CrossRefGoogle Scholar
33.Devižis, A., Serbenta, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys. Rev. Lett. 103, 027404 (2009).CrossRefGoogle Scholar
34.Devizis, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Ultrafast charge carrier mobility dynamics in poly(spirobifluorene-co-benzothiadiazole): influence of temperature on initial transport. Phys. Rev. B 82, 155204 (2010).CrossRefGoogle Scholar
35.Devižis, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498, 302306 (2010).CrossRefGoogle Scholar
36.Fornari, R.P. and Troisi, A.: Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 999710007 (2014).CrossRefGoogle ScholarPubMed
37.Qin, T. and Troisi, A.: Relation between structure and electronic properties of amorphous MEH–PPV polymers. J. Am. Chem. Soc. 135, 1124711256 (2013).CrossRefGoogle ScholarPubMed
38.McMahon, D.P., Cheung, D.L., Goris, L., Dacuña, J., Salleo, A., Troisi:, A.Relation between microstructure and charge transport in polymers of different regioregularity. J. Phys. Chem. C 115, 1938619393 (2011).CrossRefGoogle Scholar
39.Noriega, R., Salleo, A., and Spakowitz, A.J.: Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. Proc. Natl. Acad. Sci. USA 110, 1631516320 (2013).CrossRefGoogle Scholar
40.Laquai, F., Wegner, G., and Bässler, H.: What determines the mobility of charge carriers in conjugated polymers? Phil. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365, 14731487 (2007).CrossRefGoogle ScholarPubMed
41.Scharsich, C., Lohwasser, R.H., Sommer, M., Asawapirom, U., Scherf, U., Thelakkat, M., Neher, D., and Köhler, A.: Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. B: Polym. Phys. 50, 442453 (2012).CrossRefGoogle Scholar
42.Pingel, P., Zen, A., Abellón, R.D., Grozema, F.C., Siebbeles, L.D.A., and Neher, D.: Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv. Funct. Mater. 20, 22862295 (2010).CrossRefGoogle Scholar
43.Bolsée, J.-C., Oosterbaan, W.D., Lutsen, L., Vanderzande, D., and Manca, J.: The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv. Funct. Mater. 23, 862869 (2013).CrossRefGoogle Scholar
44.Rivnay, J., Noriega, R., Kline, R.J., Salleo, A., and Toney, M.F.: Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011).CrossRefGoogle Scholar
45.Hindeleh, A.M. and Hosemann, R.: Microparacrystals: the intermediate stage between crystalline and amorphous. J. Mater. Sci. 26, 51275133 (1991).CrossRefGoogle Scholar
46.Rivnay, J., Noriega, R., Northrup, J.E., Kline, R.J., Toney, M.F., and Salleo, A.: Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).CrossRefGoogle Scholar
47.Assadi, A., Svensson, C., Willander, M., and Inganäs, O.: Field-effect mobility of poly(3-hexylthiophene). Appl. Phys. Lett. 53, 195197 (1988).CrossRefGoogle Scholar
48.Yuen, J.D., Fan, J., Seifter, J., Lim, B., Hufschmid, R., Heeger, A.J., and Wudl, F.: High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 133, 2079920807 (2011).CrossRefGoogle ScholarPubMed
49.Kang, I., An, T.K., Hong, J., Yun, H.-J., Kim, R., Chung, D.S., Park, C.E., Kim, Y.-H., and Kwon, S.-K.: Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv. Mater. 25, 524528 (2013).CrossRefGoogle Scholar
50.Donaghey, J.E., Sohn, E.-H., Ashraf, R.S., Anthopoulos, T.D., Watkins, S.E., Song, K., Williams, C.K., and McCulloch, I.: Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polym. Chem. 4, 35373544 (2013).CrossRefGoogle Scholar
51.Yiu, A.T., Beaujuge, P.M., Lee, O.P., Woo, C.H., Toney, M.F., and Fréchet, J.M.J.: Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134, 21802185 (2012).CrossRefGoogle ScholarPubMed
52.Mei, J. and Bao, Z.: Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604615 (2014).CrossRefGoogle Scholar
53.Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., and Brédas, J.-L.: Charge transport in organic semiconductors. Chem. Rev. 107, 926952 (2007).CrossRefGoogle ScholarPubMed
54.Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., and Cornil, J.: Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 58045809 (2002).CrossRefGoogle ScholarPubMed
55.Olivier, Y., Niedzialek, D., Lemaur, V., Pisula, W., Müllen, K., Koldemir, U., Reynolds, J.R., Lazzaroni, R., Cornil, J., and Beljonne, D.: 25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 21192136 (2014).CrossRefGoogle ScholarPubMed
56.Lei, T., Wang, J.-Y., and Pei, J.: Design, synthesis, and structure–property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 11171126 (2014).CrossRefGoogle ScholarPubMed
57.Deng, Y., Chen, Y., Zhang, X., Tian, H., Bao, C., Yan, D., Geng, Y., and Wang, F.: Donor–acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules 45, 86218627 (2012).CrossRefGoogle Scholar
58.Troisi, A.: The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 19881991 (2011).CrossRefGoogle Scholar
59.Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5 (2014)..CrossRefGoogle ScholarPubMed
60.Chen, M.S., Lee, O.P., Niskala, J.R., Yiu, A.T., Tassone, C.J., Schmidt, K., Beaujuge, P.M., Onishi, S.S., Toney, M.F., Zettl, A., and Fréchet, J.M.J.: Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 135, 1922919236 (2013).CrossRefGoogle Scholar
61.Facchetti, A.: π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733758 (2010).CrossRefGoogle Scholar
62.McCulloch, I., Ashraf, R.S., Biniek, L., Bronstein, H., Combe, C., Donaghey, J.E., James, D.I., Nielsen, C.B., Schroeder, B.C., and Zhang, W.: Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc. Chem. Res. 45, 714722 (2012).CrossRefGoogle ScholarPubMed
63.Carbone, P. and Troisi, A.: Charge diffusion in semiconducting polymers: analytical relation between polymer rigidity and time scales for intrachain and interchain hopping. J. Phys. Chem. Lett. 5, 26372641 (2014).CrossRefGoogle Scholar
64.Zhang, W., Smith, J., Watkins, S.E., Gysel, R., McGehee, M., Salleo, A., Kirkpatrick, J., Ashraf, S., Anthopoulos, T., Heeney, M., and McCulloch, I.: Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132, 1143711439 (2010).CrossRefGoogle ScholarPubMed
65.Zhang, X., Bronstein, H., Kronemeijer, A.J., Smith, J., Kim, Y., Kline, R.J., Richter, L.J., Anthopoulos, T.D., Sirringhaus, H., Song, K., Heeney, M., Zhang, W., McCulloch, I., and DeLongchamp, D.M.: Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4 (2013).CrossRefGoogle Scholar
66.Schuettfort, T., Huettner, S., Lilliu, S., Macdonald, J.E., Thomsen, L., and McNeill, C.R.: Surface and bulk structural characterization of a high-mobility electron-transporting polymer. Macromolecules 44, 15301539 (2011).CrossRefGoogle Scholar
67.Wang, C., Rivnay, J., Himmelberger, S., Vakhshouri, K., Toney, M.F., Gomez, E.D., and Salleo, A.: Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. ACS Appl. Mater. Interfaces 5, 23422346 (2013).CrossRefGoogle ScholarPubMed
68.Fornari, R.P. and Troisi, A.: Narrower bands with better charge transport: the counterintuitive behavior of semiconducting copolymers. Adv. Mater. 26, 76277631 (2014).CrossRefGoogle Scholar
69.Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., and Müllen, K.: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 26052612 (2011).CrossRefGoogle Scholar
70.Pearson, D.S., Pincus, P.A., Heffner, G.W., and Dahman, S.J.: Effect of molecular weight and orientation on the conductivity of conjugated polymers. Macromolecules 26, 15701575 (1993).CrossRefGoogle Scholar
71.Chang, J.-F., Sun, B., Breiby, D.W., Nielsen, M.M., Sölling, T.I., Giles, M., McCulloch, I., and Sirringhaus, H.: Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 47724776 (2004).CrossRefGoogle Scholar
72.Ho, P.K.-H., Chua, L.-L., Dipankar, M., Gao, X.Y., Qi, D.C., Wee, A.T.-S., Chang, J.-F., and Friend, R.H.: Solvent effects on chain orientation and interchain π-interaction in conjugated polymer thin films: direct measurements of the air and substrate interfaces by near-edge x-ray absorption spectroscopy. Adv. Mater. 19, 215221 (2007).CrossRefGoogle Scholar
73.Rivnay, J., Steyrleuthner, R., Jimison, L.H., Casadei, A., Chen, Z., Toney, M.F., Facchetti, A., Neher, D., and Salleo, A.: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 52465255 (2011).CrossRefGoogle Scholar
74.Jimison, L.H., Toney, M.F., McCulloch, I., Heeney, M., and Salleo, A.: Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 15681572 (2009).CrossRefGoogle Scholar
75.Li, J., Du, J., Xu, J., Chan, H.L.W., and Yan, F.: The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Appl. Phys. Lett. 100, 033301 (2012).CrossRefGoogle Scholar
76.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., and Mohialdin Khaffaf, S.: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199204 (2003).CrossRefGoogle Scholar
77.Pettersson, F., Österbacka, R., Koskela, J., Kilpelä, A., Remonen, T., Zhang, Y., Inkinen, S., Wilén, C.-E., Bollström, R., Toivakka, M., Määttänen, A., Ihalainen, P., and Peltonen, J.: Ion-modulated transistors on paper using phase-separated semiconductor/insulator blends. MRS Commun. 4, 5155 (2014).CrossRefGoogle Scholar
78.Cho, J.H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M.J., Lodge, T.P., and Daniel Frisbie, C.: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900906 (2008).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Engineering semiconducting polymers for efficient charge transport
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Engineering semiconducting polymers for efficient charge transport
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Engineering semiconducting polymers for efficient charge transport
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *