Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-26T08:34:45.868Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Gas-phase synthesis of nanoparticles: present status and perspectives

Published online by Cambridge University Press:  22 August 2018

Y. Huttel*
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), c/Sor Juana Inés de la Cruz 3 28049 Madrid, Spain
L. Martínez
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), c/Sor Juana Inés de la Cruz 3 28049 Madrid, Spain
A. Mayoral
School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
I. Fernández
Nano4Energy SLNE, Escuela Técnica Superior de Ingenieros Industriales (ETSII-UPM), Instituto de Fusión Nuclear, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
Address all correspondence to Y. Huttel at
Get access


There is an increasing interest in the generation of well-defined nanoparticles (NPs) not only because of their size-related particular properties, but also because they are promising building blocks for more complex materials in nanotechnology.

Here, we will shortly introduce the gas-phase synthesis technology that has evolved rapidly in the last years and allows the fabrication of complex NPs with controllable and tuneable chemical composition and structure while keeping very good control over the size distribution. We will also address some limitations of the technology (stability over time, production yield, etc.) and discuss possible solutions.

Research Letters
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Frank, F., Schulze, W., Tesche, B., Urban, J., and Winter, B.: Formation of metal-clusters and molecules by means of the gas aggregation technique and characterization of size distribution. Surf. Sci. 156, 9099 (1985).CrossRefGoogle Scholar
2.Binns, C.: Handbook of Metal Physics, Volume 5: Metallic Nanoparticles (Elsevier, Hungary, 2008).Google Scholar
3.Huttel, Y. ed: Gas-Phase Synthesis of Nanoparticles (Wiley, Singapore, 2017).CrossRefGoogle Scholar
4.Haberland, H., Karrais, M., and Mall, M.: A new type of cluster and cluster ion-source. Z. Phys. D Atoms Mol. Clusters 20, 413415 (1991).CrossRefGoogle Scholar
5.Haberland, H., Karrais, M., Mall, M., and Thurner, Y.: Thin-films from energetic cluster impact – a feasibility study. J. Vac. Sci. Technol. A 10, 32663271 (1992).CrossRefGoogle Scholar
6.Bai, J. and Wang, J.-P.: High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 87, 152502 (2005).CrossRefGoogle Scholar
7.Hennes, M., Lotnyk, A., and Mayr, S.G.: Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles. Beilstein J. Nanotechnol. 5, 466475 (2014).CrossRefGoogle ScholarPubMed
8.Benelmekki, M., Bohra, M., Kim, J.-H., Diaz, R., Vernieres, J., Grammatikopoulos, P., and Sowwan, M.: A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale 6, 3532 (2014).CrossRefGoogle ScholarPubMed
9.Johnson, G.E., Colby, R., and Laskin, J.: Soft landing of bare nanoparticles with controlled size, composition, and morphology. Nanoscale 7, 3491 (2015).CrossRefGoogle ScholarPubMed
10.Martínez, L., Díaz, M., Román, E., Ruano, M., Llamosa P, D., and Huttel, Y.: Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir 28, 11241 (2012).CrossRefGoogle ScholarPubMed
11.Llamosa, D., Ruano, M., Martínez, L., Mayoral, A., Roman, E., García-Hernández, M., and Huttel, Y.: The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale 6, 13483 (2014).CrossRefGoogle ScholarPubMed
12.Mayoral, A., Llamosa, D., and Huttel, Y.: A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 51, 8442 (2015).CrossRefGoogle ScholarPubMed
13.Martínez, L., Mayoral, A., Espiñeira, M., Roman, E., Palomares, F.J., and Huttel, Y.: Core@shell, Au@TiOx nanoparticles by gas phase synthesis. Nanoscale 9, 6463 (2017).CrossRefGoogle ScholarPubMed
14.Chen, B., ten Brink, G.H., Palasantzas, G., and Kooi, B.J.: Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 6, 39546 (2016).CrossRefGoogle ScholarPubMed
15.Llamosa, D., Martínez, L., and Huttel, Y.: Multiple ion cluster source for the generation of magnetic nanoparticles: investigation of the efficiency as a function of the working parameters for the case of cobalt. Dataset Pap. Nanotechnol. 2014, 584391 (2014).Google Scholar
16.Ruano, M., Martínez, L., and Huttel, Y.: Investigation of the working parameters of a single magnetron of a multiple ion cluster source: determination of the relative influence of the parameters on the size and density of nanoparticles. Dataset Pap. Sci. 2013, 597023 (2013).Google Scholar
17.Martínez, L., Lauwaet, K., Santoro, G., Sobrado, J.M., Peláez, R.J., Herrero, V.J., Tanarro, I., Ellis, G.J., Cernicharo, J., Joblin, C., Huttel, Y., and Martín-Gago, J.A.: Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 8, 7250 (2018).CrossRefGoogle ScholarPubMed
18.Panjan, M., Loquai, S., Klemberg-Sapieha, J.E., and Martinu, L.: Non-uniform plasma distribution in dc magnetron sputtering: origin, shape and structuring of spokes. Plasma Sources Sci. Technol. 24, 065010 (2015).CrossRefGoogle Scholar
19.Ganeva, M., Pipa, A.V., and Hippler, R.: The influence of target erosion on the mass spectra of clusters formed in the planar DC magnetron sputtering source. Surf. Coat. Technol. 213, 4147 (2012).CrossRefGoogle Scholar
20.Rai, A., Mutzke, A., Bandelow, G., Schneider, R., Ganeva, M., Pipa, A.V., and Hippler, R.: Operational limit of a planar DC magnetron cluster source due to target erosion. Nucl. Instrum. Methods Phys. Res. B 316, 612 (2013).CrossRefGoogle Scholar
21.De Bosscher, W. and Lievens, H.: Advances in magnetron sputter sources. Thin Solid Films 351, 15 (1999).CrossRefGoogle Scholar
22.Marek, A., Valter, J., Kadlec, S., and Vyskočil, J.: Gas aggregation nanocluster source - Reactive sputter deposition of copper and titanium nanoclusters. Surf. Coat. Technol. 205, S573 (2011).CrossRefGoogle Scholar
23.Peter, T., Polonskyi, O., Gojdka, B., Ahadi, A.M., Strunskus, T., Zaporojtchenko, V., Biederman, H., and Faupel, F.: Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source. J. Appl. Phys. 112, 114321 (2012).CrossRefGoogle Scholar
24.Polasek, J., Masek, K., Marek, A., and Vyskocil, J.: Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation. Thin Solid Films 591, 194 (2015).CrossRefGoogle Scholar
25.Krishnan, G., de Graaf, S., ten Brink, G.H., Persson, P.O.Å., Kooi, B.J., and Palasantzas, G.: Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles. Nanoscale 9, 81498156 (2017).CrossRefGoogle ScholarPubMed
Supplementary material: File

Huttel et al. supplementary material

Huttel et al. supplementary material 1

Download Huttel et al. supplementary material(File)
File 5 MB