Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-b2czv Total loading time: 0.615 Render date: 2022-06-27T11:20:10.548Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

Published online by Cambridge University Press:  18 March 2013

Nikhil J. Fernandes
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
Hilmar Koerner
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Emmanuel P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Richard A. Vaia*
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433
*
Address all correspondence to Richard A. Vaia at richard.vaia@wpafb.af.mil
Get access

Abstract

Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create “hairy nanoparticles” (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle–matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure–performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mezzenga, R. and Ruokolainen, J.: Nanocomposites: nanoparticles in the right place. Nat. Mater. 8, 926928 (2009).CrossRefGoogle ScholarPubMed
2.Crosby, A.J. and Lee, J.: Polymer nanocomposites: the ‘nano’ effect on mechanical properties. Polym. Rev. 47, 217229 (2007).CrossRefGoogle Scholar
3.Krishnamoorti, R. and Vaia, R.A.: Polymer nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 45, 32523256 (2007).CrossRefGoogle Scholar
4.Kumar, S.K. and Krishnamoorti, R.: Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 1, 3758 (2010).CrossRefGoogle ScholarPubMed
5.Winey, K.I. and Vaia, R.A.: Polymer nanocomposites. MRS Bull. 32, 314322 (2007).CrossRefGoogle Scholar
6.Vaia, R.A. and Maguire, J.F.: Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 27362751 (2007).CrossRefGoogle Scholar
7.Robbes, A.-S., Cousin, F., Meneau, F., Dalmas, F., Boué, F., and Jestin, J.: Nanocomposite materials with controlled anisotropic reinforcement triggered by magnetic self-assembly. Macromolecules 44, 88588865 (2011).CrossRefGoogle Scholar
8.Mackay, M.E., Tuteja, A., Duxbury, P.M., Hawker, C.J., Van Horn, B., Guan, Z., Chen, G., and Krishnan, R.S.: General strategies for nanoparticle dispersion. Science 311, 17401743 (2006).CrossRefGoogle ScholarPubMed
9.van der Waarden, M.: Stabilization of carbon-black dispersions in hydrocarbons. J. Colloid Sci. 5, 317325 (1950).CrossRefGoogle Scholar
10.Napper, D.H.. Polymeric Stabilization of Colloidal Dispersions (Academic Press, London, 1983).Google Scholar
11.Witten, T.A. and Pincus, P.A.: Colloid stabilization by long grafted polymers. Macromolecules 19, 25092513 (1986).CrossRefGoogle Scholar
12.Krishnamoorti, R.: Strategies for dispersing nanoparticles in polymers. MRS Bull. 32, 341347 (2007).CrossRefGoogle Scholar
13.Fischer, S., Salcher, A., Kornowski, A., Weller, H., and Förster, S.: Completely miscible nanocomposites. Angew. Chem. Int. Ed. Engl. 50, 78117814 (2011).CrossRefGoogle ScholarPubMed
14.Akcora, P., Liu, H., Kumar, S.K., Moll, J., Li, Y., Benicewicz, B.C., Schadler, L.S., Acehan, D., Panagiotopoulos, A.Z., Pryamitsyn, V., Ganesan, V., Ilavsky, J., Thiyagarajan, P., Colby, R.H., and Douglas, J.F.: Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater 8, 354359 (2009).CrossRefGoogle ScholarPubMed
15.Coppée, S., Gabriele, S., Jonas, A.M., Jestin, J., and Damman, P.: Influence of chain interdiffusion between immiscible polymers on dewetting dynamics. Soft Matter 7, 9951 (2011).CrossRefGoogle Scholar
16.IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught, A. D. and Wilkinson, A. (Blackwell Scientific Publications, Oxford, 1997).Google Scholar
17.Vlassopoulos, D. and Fytas, G.: From Polymers to Colloids: Engineering the Dynamic Properties of Hairy Particles. In Advances in Polymer Science: High Solid Dispersions, edited by Cloitre, M. (Springer, 236, Berlin, Heidelberg, 2010), pp. 154.Google Scholar
18.Likos, C.N., Löwen, H., Watzlawek, M., Abbas, B., Jucknischke, O., Allgaier, J., and Richter, D.: Star polymers viewed as ultrasoft colloidal particles. Phys. Rev. Lett. 80, 44504453 (1998).CrossRefGoogle Scholar
19.Gohy, J.: Block Copolymer Micelles. In Block Copolymers II, edited by Abetz, V. (Springer-Verlag, 190, Berlin, 2005). pp. 65136.CrossRefGoogle Scholar
20.Osterman, N., Babič, D., Poberaj, I., Dobnikar, J., and Ziherl, P.: Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev.Lett. 99, 248301 (2007).CrossRefGoogle ScholarPubMed
21.Daoud, M. and Cotton, J.: Star shaped polymers : a model for the conformation and its concentration dependence. J. Phys. 43, 531538 (1982).CrossRefGoogle Scholar
22.Dukes, D., Li, Y., Lewis, S., Benicewicz, B., Schadler, L., and Kumar, S.K.: Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 43, 15641570 (2010).CrossRefGoogle Scholar
23.Ohno, K., Morinaga, T., Takeno, S., Tsujii, Y., and Fukuda, T.: Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 40, 91439150 (2007).CrossRefGoogle Scholar
24.Milner, S.T., Witten, T.A., and Cates, M.E.: Theory of the grafted polymer brush. Macromolecules 21, 26102619 (1988).CrossRefGoogle Scholar
25.Wijmans, C.M. and Zhulina, E.B.: Polymer brushes at curved surfaces. Macromolecules 26, 72147224 (1993).CrossRefGoogle Scholar
26.Likos, C.N.: Effective interactions in soft condensed matter physics. Phys. Rep. 348, 267439 (2001).CrossRefGoogle Scholar
27.Watzlawek, M., Likos, C.N., and Löwen, H.: Phase diagram of star polymer solutions. Phys. Rev. Lett. 82, 52895292 (1999).CrossRefGoogle Scholar
28.Kim, J.U. and Matsen, M.W.: Interaction between polymer-grafted particles. Macromolecules 41, 44354443 (2008).CrossRefGoogle Scholar
29.Goel, V., Pietrasik, J., Dong, H., Sharma, J., Matyjaszewski, K., and Krishnamoorti, R.: Structure of polymer tethered highly grafted nanoparticles. Macromolecules 44, 81298135 (2011).CrossRefGoogle Scholar
30.Goel, V., Pietrasik, J., Matyjaszewski, K., and Krishnamoorti, R.: Linear viscoelasticity of spherical SiO2 nanoparticle-tethered poly(butyl acrylate) hybrids. Ind. Eng. Chem. Res. 49, 1198511990 (2010).CrossRefGoogle Scholar
31.Yu, H.-Y. and Koch, D.L.: Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir 26, 1680116811 (2010).CrossRefGoogle ScholarPubMed
32.Chremos, A., Panagiotopoulos, A.Z., Yu, H.-Y., and Koch, D.L.: Structure of solvent-free grafted nanoparticles: molecular dynamics and density-functional theory. J. Chem. Phys. 135, 114901 (2011).CrossRefGoogle ScholarPubMed
33.Hong, B., Chremos, A., and Panagiotopoulos, A.Z.: Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles. J. Chem. Phys. 136, 204904 (2012).CrossRefGoogle ScholarPubMed
34.Chremos, A. and Panagiotopoulos, A.: Structural transitions of solvent-free oligomer-grafted nanoparticles. Phys. Rev. Lett. 107, 105503 (2011).CrossRefGoogle ScholarPubMed
35.Bishop, K.J.M., Wilmer, C.E., Soh, S., and Grzybowski, B.A.: Nanoscale forces and their uses in self-assembly. Small 5, 16001630 (2009).CrossRefGoogle ScholarPubMed
36.Akcora, P., Kumar, S.K., Garci'a Sakai, V., Li, Y., Benicewicz, B.C., and Schadler, L.S.: Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43, 82758281 (2010).CrossRefGoogle Scholar
37.Akcora, P., Kumar, S.K., Moll, J., Lewis, S., Schadler, L.S., Li, Y., Benicewicz, B.C., Sandy, A., Narayanan, S., Ilavsky, J., Thiyagarajan, P., Colby, R.H., and Douglas, J.F.: Gel-like’ mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43, 10031010 (2010).CrossRefGoogle Scholar
38.McEwan, M.E., Egorov, S.a., Ilavsky, J., Green, D.L., and Yang, Y.: Mechanical reinforcement of polymer nanocomposites: theory and ultra-small angle x-ray scattering (USAXS) studies. Soft Matter 7, 2725 (2011).CrossRefGoogle Scholar
39.Choi, J., Hui, C.M., Pietrasik, J., Dong, H., Matyjaszewski, K., and Bockstaller, M.R.: Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. Soft Matter 8, 4072 (2012).CrossRefGoogle Scholar
40.Agarwal, P., Chopra, M., and Archer, L.A.: Nanoparticle netpoints for shape-memory polymers. Angew. Chem. Int. Ed. Engl. 50, 86708673 (2011).CrossRefGoogle ScholarPubMed
41.Iyer, B.V.S., Salib, I.G., Yashin, V.V., Kowalewski, T., Matyjaszewski, K., and Balazs, A.C.: Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9, 109121 (2013). doi:10.1039/c2sm27121dCrossRefGoogle Scholar
42.Torquato, S., Hyun, S., and Donev, A.: Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 89, 266601 (2002).CrossRefGoogle ScholarPubMed
43.Guest, J.K. and Prévost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43, 70287047 (2006).CrossRefGoogle Scholar
44.Hur, K., Hennig, R.G., Escobedo, F.A., and Wiesner, U.: Mesoscopic structure prediction of nanoparticle assembly and coassembly: theoretical foundation. J. Chem. Phys. 133, 194108 (2010).CrossRefGoogle ScholarPubMed
45.Shenhar, R., Norsten, T.B., and Rotello, V.M.: Polymer-mediated nanoparticle assembly: structural control and applications. Adv. Mater. 17, 657669 (2005).CrossRefGoogle Scholar
46.Lo, C.-T., Lee, B., Rago, N.L.D., Winans, R.E., and Thiyagarajan, P.: Strategy for better ordering in diblock copolymer based nanocomposites. Macromol. Rapid Commun. 28, 16071612 (2007).CrossRefGoogle Scholar
47.Bockstaller, M.R., Mickiewicz, R.A., and Thomas, E.L.: Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 17, 13311349 (2005).CrossRefGoogle Scholar
48.Zhu, X., Wang, L., Lin, J., and Zhang, L.: Ordered nanostructures self-assembled from block copolymer tethered nanoparticles. ACS Nano 4, 49794988 (2010).CrossRefGoogle ScholarPubMed
49.Xu, G.-K., Feng, X.-Q., and Yu, S.-W.: Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites. Nano Res. 3, 356362 (2010).CrossRefGoogle Scholar
50.Wojcik, M., Lewandowski, W., Matraszek, J., Mieczkowski, J., Borysiuk, J., Pociecha, D., and Gorecka, E.: Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 51675169 (2009).CrossRefGoogle ScholarPubMed
51.In, I., Jun, Y., Kim, Y.J., and Kim, S.Y.: Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. (Camb.) (6), 800801 (2005). doi:10.1039/b413510eCrossRefGoogle Scholar
52.He, J., Liu, Y., Babu, T., Wei, Z., and Nie, Z.: Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 134, 1134211345 (2012).CrossRefGoogle ScholarPubMed
53.Guo, Y., Harirchian-Saei, S., Izumi, C.M.S., and Moffitt, M.G.: Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano 5, 33093318 (2011).CrossRefGoogle ScholarPubMed
54.Jayaraman, A. and Schweizer, K.S.: Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix. Macromolecules 42, 84238434 (2009).CrossRefGoogle Scholar
55.Jayaraman, A. and Schweizer, K.S.: Structure and assembly of dense solutions and melts of single tethered nanoparticles. J. Chem. Phys. 128, 164904 (2008).CrossRefGoogle ScholarPubMed
56.Jayaraman, A. and Schweizer, K.S.: Effect of the number and placement of polymer tethers on the structure of concentrated solutions and melts of hybrid nanoparticles. Langmuir 24, 1111911130 (2008).CrossRefGoogle ScholarPubMed
57.Iacovella, C.R. and Glotzer, S.C.: Complex crystal structures formed by the self-assembly of ditethered nanospheres. Nano Lett. 9, 12061211 (2009).CrossRefGoogle ScholarPubMed
58.Phillips, C.L., Iacovella, C.R., and Glotzer, S.C.: Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6, 1693 (2010).CrossRefGoogle Scholar
59.Wang, B., Li, B., Dong, B., Zhao, B., and Li, C.Y.: Homo- and hetero-particle clusters formed by Janus nanoparticles with bicompartment polymer brushes. Macromolecules 43, 92349238 (2010).CrossRefGoogle Scholar
60.Xia, Y., Xiong, Y., Lim, B., and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. Engl. 48, 60103 (2009).CrossRefGoogle ScholarPubMed
61.Guerrero-Martínez, A., Barbosa, S., Pastoriza-Santos, I., and Liz-Marzán, L.M.: Nanostars shine bright for you. Curr. Opin. Colloid Interface Sci. 16, 118127 (2011).CrossRefGoogle Scholar
62.Wang, C., Xu, C., Zeng, H., and Sun, S.: Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. Weinheim 21, 30453052 (2009).CrossRefGoogle ScholarPubMed
63.Glotzer, S.C., Horsch, M.A., Iacovella, C.R., Zhang, Z., Chan, E.R., and Zhang, X.: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287295 (2005).CrossRefGoogle Scholar
64.Horsch, M.A., Lamm, M.H., and Glotzer, S.C.: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 13411346 (2003).Google Scholar
65.Glotzer, S.C. and Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557562 (2007).CrossRefGoogle ScholarPubMed
66.Nykypanchuk, D., Maye, M.M., van der Lelie, D., and Gang, O.: DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549552 (2008).CrossRefGoogle ScholarPubMed
67.Slocik, J.M., Tam, F., Halas, N.J., and Naik, R.R.: Peptide-assembled optically responsive nanoparticle complexes. Nano Lett. 7, 10541058 (2007).CrossRefGoogle ScholarPubMed
68.Glotzer, S.C.: Self-assembly of patchy particles. Nano Lett. 4, 14071413 (2004).Google Scholar
69.Malescio, G. and Pellicane, G.: Stripe phases from isotropic repulsive interactions. Nat. Mater. 2, 97100 (2003).CrossRefGoogle ScholarPubMed
70.Likos, C.N.: Soft matter with soft particles. Soft Matter 2, 478 (2006).CrossRefGoogle Scholar
71.Kandar, A.K., Srivastava, S., Basu, J.K., Mukhopadhyay, M.K., Seifert, S., and Narayanan, S.: Unusual dynamical arrest in polymer grafted nanoparticles. J. Chem. Phys. 130, 121102 (2009).CrossRefGoogle ScholarPubMed
72.Agarwal, P., Srivastava, S., and Archer, L.: Thermal jamming of a colloidal glass. Phys. Rev. Lett. 107, 268302 (2011).CrossRefGoogle ScholarPubMed
73.Savin, D.A., Pyun, J., Patterson, G.D., Kowalewski, T., and Matyjaszewski, K.: Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J. Polym. Sci. Part B: Polym. Phys. 40, 26672676 (2002).CrossRefGoogle Scholar
74.Tchoul, M.N., Fillery, S.P., Koerner, H., Drummy, L.F., Oyerokun, F.T., Mirau, P.A., Durstock, M.F., and Vaia, R.A.: Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 17491759 (2010).CrossRefGoogle Scholar
75.Agarwal, P., Qi, H., and Archer, L.A.: The ages in a self-suspended nanoparticle liquid. Nano Lett. 10, 111115 (2010).CrossRefGoogle Scholar
76.Rodriguez, R., Herrera, R., Archer, L.A., and Giannelis, E.P.: Nanoscale ionic materials. Adv. Mater. 20, 43534358 (2008).CrossRefGoogle Scholar
77.Bourlinos, A.B., Herrera, R., Chalkias, N., Jiang, D.D., Zhang, Q., Archer, L.A., and Giannelis, E.P.: Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater. 17, 234237 (2005).CrossRefGoogle Scholar
78.Pearson, D.S. and Helfand, E.: Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888895 (1984).CrossRefGoogle Scholar
79.Chremos, A., Panagiotopoulos, A.Z., and Koch, D.L.: Dynamics of solvent-free grafted nanoparticles. J. Chem. Phys. 136, 044902 (2012).CrossRefGoogle ScholarPubMed
80.Bourlinos, A.B., Giannelis, E.P., Zhang, Q., Archer, L.A., Floudas, G., and Fytas, G.: Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur. Phys. J. E Soft Matter 20, 109117 (2006).CrossRefGoogle ScholarPubMed
81.Bourlinos, A.B., Ray Chowdhury, S., Herrera, R., Jiang, D.D., Zhang, Q., Archer, L.A., and Giannelis, E.P.: Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv. Funct. Mater. 15, 12851290 (2005).CrossRefGoogle Scholar
82.Rodriguez, R., Herrera, R., Bourlinos, A.B., Li, R., Amassian, A., Archer, L.A., and Giannelis, E.P.: The synthesis and properties of nanoscale ionic materials. Appl. Organometal. Chemis. 24, 581589 (2010).CrossRefGoogle Scholar
83.Hong, B., Chremos, A., and Panagiotopoulos, A.Z.: Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Discus. 154, 29 (2012).CrossRefGoogle ScholarPubMed
84.Jespersen, M.L., Mirau, P.A., von Meerwall, E., Vaia, R.A., Rodriguez, R., and Giannelis, E.P.: Canopy dynamics in nanoscale ionic materials. ACS Nano 4, 37353742 (2010).CrossRefGoogle ScholarPubMed
85.Cui, H., Feng, Y., Ren, W., Zeng, T., Lv, H., and Pan, Y.: Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat. Nanotechnol. 3, 3241 (2009).CrossRefGoogle ScholarPubMed
86.Masala, O. and Seshadri, R.: Synthesis routes for large volumes of nanoparticles. Annu. Rev. Mater. Res. 34, 4181 (2004).CrossRefGoogle Scholar
87.Liu, G., Yan, X., Lu, Z., Curda, S.a., and Lal, J.: One-pot synthesis of block copolymer coated cobalt nanocrystals. Chem. Mater. 17, 49854991 (2005).CrossRefGoogle Scholar
88.Zhang, Y., Luo, S., and Liu, S.: Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach. Macromolecules 38, 98139820 (2005).CrossRefGoogle Scholar
89.Subbiah, R., Veerapandian, M., and Yun, K.S.: Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17, 45594577 (2010).CrossRefGoogle ScholarPubMed
90.Neouze, M.-A. and Schubert, U.: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte Chem. – Chem. Monthly 139, 183195 (2008).CrossRefGoogle Scholar
91.Grubbs, R.B.: Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 47, 197215 (2007).CrossRefGoogle Scholar
92.Wuelfing, W.P., Gross, S.M., Miles, D.T., and Murray, R.W.: Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J. Am. Chem. Soc. 120, 1269612697 (1998).CrossRefGoogle Scholar
93.Corbierre, M.K., Cameron, N.S., and Lennox, R.B.: Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20, 28672873 (2004).CrossRefGoogle ScholarPubMed
94.Zheng, Y., Zhang, J., Lan, L., Yu, P., Rodriguez, R., Herrera, R., Wang, D., and Giannelis, E.P.: Preparation of solvent-free gold nanofluids with facile self-assembly technique. Chemphyschem 11, 6164 (2010).CrossRefGoogle ScholarPubMed
95.Mehdizadeh Taheri, S., Fischer, S., and Förster, S.: Routes to nanoparticle-polymer superlattices. Polymers 3, 662673 (2011).CrossRefGoogle Scholar
96.Penn, L.S., Huang, H., Sindkhedkar, M.D., Rankin, S.E., Chittenden, K., Quirk, R.P., Mathers, R.T., and Lee, Y.: Formation of tethered nanolayers: three regimes of kinetics. Macromolecules 35, 70547066 (2002).CrossRefGoogle Scholar
97.Oyerokun, F.T. and Vaia, R.A.: Distribution in the grafting density of end-functionalized polymer chains adsorbed onto nanoparticle surfaces. Macromolecules 45, 76497659 (2012).CrossRefGoogle Scholar
98.Hübner, E., Allgaier, J., Meyer, M., Stellbrink, J., Pyckhout-Hintzen, W., and Richter:, D.Synthesis of polymer/silica hybrid nanoparticles using anionic polymerization techniques. Macromolecules 43, 856867 (2010).CrossRefGoogle Scholar
99.Papke, B.L., Bartley, L.S., and Migdal, C.A.: Adsorption of poly(isobutenyl)succinimide dispersants onto calcium alkylarylsulfonate colloidal dispersions in hydrocarbon media. Langmuir 7, 26142619 (1991).CrossRefGoogle Scholar
100.Fernandes, N., Dallas, P., Rodriguez, R., Bourlinos, A.B., Georgakilas, V., and Giannelis, E.P.: Fullerol ionic fluids. Nanoscale 2, 16531656 (2010).CrossRefGoogle ScholarPubMed
101.Fernandes, N.J., Akbarzadeh, J., Peterlik, H., and Giannelis, E.P.: Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids. ACS Nano 7, 12651271 (2013). doi:10.1021/nn304735rCrossRefGoogle ScholarPubMed
102.Radhakrishnan, B., Ranjan, R., and Brittain, W.J.: Surface initiated polymerizations from silica nanoparticles. Soft Matter 2, 386 (2006).CrossRefGoogle Scholar
103.Advincula, R.C.: Surface initiated polymerization from nanoparticle surfaces. J. Dispers. Sci. Technol. 24, 343361 (2003).CrossRefGoogle Scholar
104.Pyun, J. and Matyjaszewski, K.: Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living' radical polymerization. Chem. Mater. 13, 34363448 (2001).CrossRefGoogle Scholar
105.Zhou, Q., Wang, S., Fan, X., Advincula, R., and Mays, J.: Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles. Langmuir 18, 33243331 (2002).CrossRefGoogle Scholar
106.Jordan, R., West, N., Ulman, A., Chou, Y.-M., and Nuyken, O.: Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 34, 16061611 (2001).CrossRefGoogle Scholar
107.Min, K., Gao, H., Yoon, J.A., Wu, W., Kowalewski, T., and Matyjaszewski, K.: One-pot synthesis of hairy nanoparticles by emulsion ATRP. Macromolecules 42, 15971603 (2009).CrossRefGoogle Scholar
108.Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., and Kusumo, A.: Grafting from surfaces for ‘everyone’: ARGET ATRP in the presence of air. Langmuir 23, 45284531 (2007).CrossRefGoogle ScholarPubMed
109.Matyjaszewski, K. and Tsarevsky, N.V: Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276288 (2009).CrossRefGoogle ScholarPubMed
110.Stenzel, M.H.: Hairy Core-Shell Nanoparticles via RAFT: where are the opportunities and where are the problems and challenges?. Macromol. Rapid Commun. 30, 16031624 (2009).CrossRefGoogle ScholarPubMed
111.Li, C. and Benicewicz, B.C.: Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition − fragmentation chain transfer polymerization. Macromolecules 38, 59295936 (2005).CrossRefGoogle Scholar
112.Li, Y. and Benicewicz, B.C.: Functionalization of silica nanoparticles via the combination of surface-initiated raft polymerization and click reactions. Macromolecules 41, 79867992 (2008).CrossRefGoogle Scholar
113.Siegwart, D.J., Whitehead, K.A., Nuhn, L., Sahay, G., Cheng, H., Jiang, S., Ma, M., Lytton-Jean, A., Vegas, A., Fenton, P., Levins, C.G., Love, K.T., Lee, H., Cortez, C., Collins, S.P., Li, Y.F., Jang, J., Querbes, W., Zurenko, C., Novobrantseva, T., Langer, R., and Anderson, D.G.: Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. USA 108, 1299613001 (2011).CrossRefGoogle ScholarPubMed
114.Sanchez, C., Julián, B., Belleville, P., and Popall, M.: Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559 (2005).CrossRefGoogle Scholar
115.Trikeriotis, M., Bae, W.J., Schwartz, E., Krysak, M., Lafferty, N., Xie, P., Smith, B., Zimmerman, P.A., Ober, C.K., and Giannelis, E.P.: Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. In Proceedings of SPIE, Rieger, M.L., Thiele, J. ed, 76390E-76390E-10 (Society of Photo-Optical Instrumentation Engineers DO - 10.1117/12.846672, 2010), pp. 7639.Google Scholar
116.Kotov, N.A.: Ordered layered assemblies of nanoparticles. MRS Bull. 26, 992997 (2001).CrossRefGoogle Scholar
117.Kim, Y., Kim, D., Kwon, I., Jung, H.W., and Cho, J.: Solvent-free nanoparticle fluids with highly collective functionalities for layer-by-layer assembly. J. Mater. Chem. 22, 11488 (2012).Google Scholar
118.Zhang, J., Li, Q., Di, X., Liu, Z., and Xu, G.: Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films. Nanotechnology 19, 435606 (2008).CrossRefGoogle ScholarPubMed
119.Sakai, N., Prasad, G.K., Ebina, Y., Takada, K., and Sasaki, T.: Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite films for switching of electric conductivity in response to ultraviolet and visible light. Chem. Mater. 18, 35963598 (2006).CrossRefGoogle Scholar
120.Mauter, M.S., Wang, Y., Okemgbo, K.C., Osuji, C.O., Giannelis, E.P., and Elimelech, M.: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces 3, 28612868 (2011).CrossRefGoogle ScholarPubMed
121.Tiraferri, A., Kang, Y., Giannelis, E.P., and Elimelech, M.: Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environ. Sci. Technol. 46, 1113511144 (2012).CrossRefGoogle ScholarPubMed
122.Tiraferri, A., Kang, Y., Giannelis, E.P., and Elimelech, M.: Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl. Mater. Interfaces 4, 50445053 (2012).CrossRefGoogle ScholarPubMed
123.Fang, J., Kelarakis, A., Estevez, L., Wang, Y., Rodriguez, R., and Giannelis, E.P.: Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process. J. Mater. Chem. 20, 1651 (2010).CrossRefGoogle Scholar
124.Guldi, D.M., Zilbermann, I., Anderson, G., Kotov, N.A., Tagmatarchis, N., and Prato, M.: Nanosized inorganic/organic composites for solar energy conversion. J. Mater. Chem. 15, 114 (2005).CrossRefGoogle Scholar
125.Labastide, J.A., Baghgar, M., Dujovne, I., Yang, Y., Dinsmore, A.D., Sumpter, B.G., Venkataraman, D., and Barnes, M.D.: Polymer nanoparticle superlattices for organic photovoltaic applications. J. Phys. Chem. Lett. 2, 30853091 (2011).CrossRefGoogle Scholar
126.Lee, D.Y., Pham, J.T., Lawrence, J., Lee, C.H., Parkos, C., Emrick, T., and Crosby, A.J.: Macroscopic nanoparticle ribbons and fabrics. Adv. Mater. Weinheim (2012). doi:10.1002/adma.201203719Google ScholarPubMed
127.Kim, H.S., Lee, C.H., Sudeep, P.K., Emrick, T., and Crosby, A.J.: Nanoparticle stripes, grids, and ribbons produced by flow coating. Adv. Mater. Weinheim 22, 46004604 (2010).CrossRefGoogle ScholarPubMed
128.Lin, K.-Y.A. and Park, A.-H.A.: Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials. Environ. Sci. Technol. 45, 66336639 (2011).CrossRefGoogle ScholarPubMed
129.Park, Y., Decatur, J., Lin, K.-Y.A., and Park, A.-H.A.: Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization. Phys. Chem. Chem. Phys. 13, 1811518122 (2011).CrossRefGoogle ScholarPubMed
130.Calcagnile, P., Fragouli, D., Bayer, I.S., Anyfantis, G.C., Martiradonna, L., Cozzoli, P.D., Cingolani, R., and Athanassiou, A.: Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6, 54135419 (2012).CrossRefGoogle ScholarPubMed
131.Shipway, A.N., Katz, E., and Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 1852 (2000).3.0.CO;2-L>CrossRefGoogle ScholarPubMed
132.Krasteva, N., Besnard, I., Guse, B., Bauer, R.E., Müllen, K., Yasuda, A., and Vossmeyer, T.: Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett. 2, 551555 (2002).CrossRefGoogle Scholar
133.Wang, L., Shi, X., Kariuki, N.N., Schadt, M., Wang, G.R., Rendeng, Q., Choi, J., Luo, J., Lu, S., and Zhong, C.-J.: Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties. J. Am. Chem. Soc. 129, 21612170 (2007).CrossRefGoogle ScholarPubMed
134.Sönnichsen, C., Reinhard, B.M., Liphardt, J., and Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741745 (2005).CrossRefGoogle ScholarPubMed
135.Bhattacharjee, R.R., Li, R., Estevez, L., Smilgies, D.-M., Amassian, A., and Giannelis, E.P.: A plasmonic fluid with dynamically tunable optical properties. J. Mater. Chem. 19, 8728 (2009).CrossRefGoogle Scholar
136.Vossmeyer, T., Stolte, C., Ijeh, M., Kornowski, A., and Weller, H.: Networked gold-nanoparticle coatings on polyethylene: charge transport and strain sensitivity. Adv. Funct. Mater. 18, 16111616 (2008).CrossRefGoogle Scholar
137.Loh, K.J. and Chang, D.: Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J. Mater. Sci. 46, 228237 (2010).CrossRefGoogle Scholar
138.Lu, Y., Liu, G.L., and Lee, L.P.: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5, 59 (2005).CrossRefGoogle ScholarPubMed
139.Fabregat, V., Izquierdo, M.A., Burguete, M.I., Galindo, F., and Luis, S.V.: Quantum dot–polymethacrylate composites for the analysis of NOx by fluorescence spectroscopy. Inorg. Chim. Acta 381, 212217 (2012).CrossRefGoogle Scholar
140.Kim, D. and Archer, L.A.: Nanoscale organic-inorganic hybrid lubricants. Langmuir 27, 30833094 (2011).CrossRefGoogle ScholarPubMed
141.Nomura, A., Okayasu, K., Ohno, K., Fukuda, T., and Tsujii, Y.: Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44, 50135019 (2011).CrossRefGoogle Scholar
142.Voevodin, A.A., Vaia, R.A., Patton, S.T., Diamanti, S., Pender, M., Yoonessi, M., Brubaker, J., Hu, J.-J., Sanders, J.H., Phillips, B.S., and MacCuspie, R.I.: Nanoparticle-wetted surfaces for relays and energy transmission contacts. Small 3, 19571963 (2007).CrossRefGoogle ScholarPubMed
143.Patton, S.T., Voevodin, A.A., Vaia, R.A., Pender, M., Diamanti, S.J., and Phillips, B.: Nanoparticle liquids for surface modification and lubrication of MEMS switch contacts. J. Microelectromech. Syst. 17, 741746 (2008).CrossRefGoogle Scholar
144.Nugent, J.L., Moganty, S.S., and Archer, L.A.: Nanoscale organic hybrid electrolytes. Adv. Mater. Weinheim 22, 36773680 (2010).CrossRefGoogle ScholarPubMed
145.Moganty, S.S., Jayaprakash, N., Nugent, J.L., Shen, J., and Archer, L.A.: Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew. Chem. 122, 93449347 (2010).CrossRefGoogle Scholar
146.Nambiar, S. and Yeow, J.T.W.: Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 57175726 (2012).CrossRefGoogle ScholarPubMed
147.Ohno, K., Morinaga, T., Takeno, S., Tsujii, Y., and Fukuda, T.: Suspensions of silica particles grafted with concentrated polymer brush: a new family of colloidal crystals. Macromolecules 39, 12451249 (2006).CrossRefGoogle Scholar
148.Centeno, E. and Cassagne, D.: Graded photonic crystals. Opt. Lett. 30, 22782280 (2005).CrossRefGoogle ScholarPubMed
149.Cheng, W., Wang, J., Jonas, U., Fytas, G., and Stefanou, N.: Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830836 (2006).CrossRefGoogle ScholarPubMed
150.Penciu, R.S., Kriegs, H., Petekidis, G., Fytas, G., and Economou, E.N.: Phonons in colloidal systems. J. Chem. Phys. 118, 5224 (2003).CrossRefGoogle Scholar
151.Tang, C., Bombalski, L., Kruk, M., Jaroniec, M., Matyjaszewski, K., and Kowalewski, T.: Nanoporous carbon films from ‘hairy’ polyacrylonitrile-grafted colloidal silica nanoparticles. Adv. Mater. 20, 15161522 (2008).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *