Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T09:20:00.289Z Has data issue: false hasContentIssue false

Influence of morphological disorder on in- and out-of-plane charge transport in conjugated polymer films

Published online by Cambridge University Press:  20 November 2015

Anton Li
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
Ban Xuan Dong
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
Peter F. Green*
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
*Address all correspondence to Peter F. Green
Get access


Thin films of the conjugated polymer poly(3-hexylthiophene) (P3HT) of different morphological structures were fabricated using both conventional spin-casting and the matrix-assisted pulsed laser evaporation (MAPLE). Films deposited by MAPLE exhibit inhomogeneous morphologies comprised globular subfeatures with dimensions of the order of 100 nm. We show that whereas the in-plane carrier mobilities of MAPLE-deposited films (8.3 × 10−3 cm2/V/s) are comparable with those of spin-cast analogs (5.5 × 10−3 cm2/V/s), the out-of-plane mobilities are an order of magnitude lower (4.1 × 10−4 cm2/V/s versus 2.7 × 10−3 cm2/V/s). Both in- and out-of-plane carrier transport characteristics of MAPLE-deposited films indicate a broad density of states and high carrier trap concentration. Optical absorbance spectroscopy not only corroborates a high degree of energetic disorder in MAPLE-deposited films, but also suggests that the P3HT chains possess average conjugation lengths comparable with spin-cast counterparts. Our findings, rationalized in terms of the Gaussian Disorder Model, describing carrier transport in an environment characterized by both positional and energetic disorder, provide important perspectives on the extent to which disorder impacts mechanisms of charge transport in conjugated polymers.

Research Letters
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Wu, P.K., Ringeisen, B.R., Callahan, J., Brooks, M., Bubb, D.M., Wu, H.D., Piqué, A., Spargo, B., McGill, R.A., and Chrisey, D.B.: The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398–399, 607614 (2001).CrossRefGoogle Scholar
2. Caricato, A.P. and Luches, A.: Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: a review. Appl. Phys. A 105, 565582 (2011).CrossRefGoogle Scholar
3. McGill, R.A., Chrisey, D.B., Pique, A., and Mlsna, T.E.: Matrix-assisted pulsed-laser evaporation (MAPLE) of functionalized polymers: applications with chemical sensors. SPIE Proc. 3274, 255266 (1998).CrossRefGoogle Scholar
4. Piqué, A., McGill, R.A., Chrisey, D.B., Leonhardt, D., Mslna, T.E., Spargo, B.J., Callahan, J.H., Vachet, R.W., Chung, R., and Bucaro, M.A.: Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 355–356, 536541 (1999).CrossRefGoogle Scholar
5. Chrisey, D.B., Piqué, A., McGill, R.A., Horwitz, J.S., Ringeisen, B.R., Bubb, D.M., and Wu, P.K.: Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553576 (2003).CrossRefGoogle ScholarPubMed
6. Guo, Y., Morozov, A., Schneider, D., Chung, J.W., Zhang, C., Waldmann, M., Yao, N., Fytas, G., Arnold, C.B., and Priestley, R.D.: Ultrastable nanostructured polymer glasses. Nat. Mater. 11, 337343 (2012).CrossRefGoogle ScholarPubMed
7. Shepard, K.B., Guo, Y., Arnold, C.B., and Priestley, R.D.: Nanostructured morphology of polymer films prepared by matrix assisted pulsed laser evaporation. Appl. Phys. A 110, 771777 (2013).CrossRefGoogle Scholar
8. Gutiérrez-Llorente, A., Horowitz, G., Pérez-Casero, R., Perrière, J., Fave, J.L., Yassar, A., and Sant, C.: Growth of polyalkylthiophene films by matrix assisted pulsed laser evaporation. Org. Electron. 5, 2934 (2004).CrossRefGoogle Scholar
9. Pate, R., Lantz, K.R., and Stiff-Roberts, A.D.: Tabletop resonant infrared matrix-assisted pulsed laser evaporation of light-emitting organic thin films. IEEE J. Sel. Top. Quantum Electron. 14, 10221030 (2008).CrossRefGoogle Scholar
10. McCormick, R.D., Lenhardt, J., and Stiff-Roberts, A.D.: Effects of emulsion-based resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) on the molecular weight of. Polymers 4, 341354 (2012).CrossRefGoogle Scholar
11. Ge, W., Atewologun, A., and Stiff-Roberts, A.D.: Hybrid nanocomposite thin films deposited by emulsion-based resonant infrared matrix-assisted pulsed laser evaporation for photovoltaic applications. Org. Electron. 22, 98107 (2015).CrossRefGoogle Scholar
12. Greer, J.A.: Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment. Appl. Phys. A 105, 661671 (2011).CrossRefGoogle Scholar
13. Ge, W., McCormick, R.D., Nyikayaramba, G., and Stiff-Roberts, A.D.: Bulk heterojunction PCPDTBT: PC71BM organic solar cells deposited by emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation. Appl. Phys. Lett. 104, 223901 (2014).CrossRefGoogle Scholar
14. Leveugle, E. and Zhigilei, L.V.: Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102, 074914 (2007).CrossRefGoogle Scholar
15. Shepard, K.B., Arnold, C.B., and Priestley, R.D.: Transport and stability of laser-deposited amorphous polymer Nanoglobules. ACS Macro Lett. 3, 10461050 (2014).CrossRefGoogle ScholarPubMed
16. Shepard, K.B., Arnold, C.B., and Priestley, R.D.: Origins of nanostructure in amorphous polymer coatings via matrix assisted pulsed laser evaporation. Appl. Phys. Lett. 103, 123105 (2013).CrossRefGoogle Scholar
17. Spano, F.C.: Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122, 234701 (2005).CrossRefGoogle ScholarPubMed
18. Spano, F.C.: Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder. Chem. Phys. 325, 2235 (2006).CrossRefGoogle Scholar
19. Clark, J., Chang, J.-F., Spano, F.C., Friend, R.H., and Silva, C.: Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94, 163306 (2009).CrossRefGoogle Scholar
20. Gierschner, J., Huang, Y.-S., Averbeke, B.V., Cornil, J., Friend, R.H., and Beljonne, D.: Excitonic versus electronic couplings in molecular assemblies: the importance of non-nearest neighbor interactions. J. Chem. Phys. 130, 044105 (2009).CrossRefGoogle ScholarPubMed
21. Spano, F.C. and Silva, C.: H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477500 (2014).CrossRefGoogle ScholarPubMed
22. Dinelli, F., Murgia, M., Levy, P., Cavallini, M., Biscarini, F., and de Leeuw, D.M.: Spatially correlated charge transport in organic thin film transistors. Phys. Rev. Lett. 92, 116802 (2004).CrossRefGoogle ScholarPubMed
23. Salleo, A., Kline, R.J., DeLongchamp, D.M., and Chabinyc, M.L.: Microstructural characterization and charge transport in thin films of conjugated polymers. Adv. Mater. 22, 38123838 (2010).CrossRefGoogle ScholarPubMed
24. Joseph Kline, R., McGehee, M.D., and Toney, M.F.: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222228 (2006).CrossRefGoogle Scholar
25. Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 13191335 (2014).CrossRefGoogle ScholarPubMed
26. Himmelberger, S. and Salleo, A.: Engineering semiconducting polymers for efficient charge transport. MRS Commun. FirstView, 113 (2015).Google Scholar
27. Juška, G., Arlauskas, K., Viliūnas, M., and Kočka, J.: Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys. Rev. Lett. 84, 49464949 (2000).CrossRefGoogle ScholarPubMed
28. Huang, B., Glynos, E., Frieberg, B., Yang, H., and Green, P.F.: Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-hexylthiophene) films. ACS Appl. Mater. Interfaces 4, 52045210 (2012).CrossRefGoogle ScholarPubMed
29. Blom, P.W.M., de Jong, M.J.M., and Vleggaar, J.J.M.: Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 33083310 (1996).CrossRefGoogle Scholar
30. Kirchartz, T.: Influence of diffusion on space-charge-limited current measurements in organic semiconductors. Beilstein J. Nanotechnol. 4, 180188 (2013).CrossRefGoogle ScholarPubMed
31. Juška, G., Arlauskas, K., Viliūnas, M., Genevičius, K., Österbacka, R., and Stubb, H.: Charge transport in π-conjugated polymers from extraction current transients. Phys. Rev. B 62, R16235R16238 (2000).CrossRefGoogle Scholar
32. Bässler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175, 1556 (1993).CrossRefGoogle Scholar
33. Mozer, A.J. and Sariciftci, N.S.: Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chem. Phys. Lett. 389, 438442 (2004).CrossRefGoogle Scholar
34. Dong, B.X., Huang, B., Tan, A., and Green, P.F.: Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J. Phys. Chem. C 118, 1749017498 (2014).CrossRefGoogle Scholar
35. Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 10381044 (2013).CrossRefGoogle ScholarPubMed
36. Mollinger, S.A., Krajina, B.A., Noriega, R., Salleo, A., and Spakowitz, A.J.: Percolation, tie-molecules, and the microstructural determinants of charge transport in Semicrystalline conjugated polymers. ACS Macro Lett. 4, 708712 (2015). doi:10.1021/acsmacrolett.5b00314.CrossRefGoogle ScholarPubMed
Supplementary material: File

Li supplementary material

Li supplementary material 1

Download Li supplementary material(File)
File 63.1 KB