Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T17:51:48.348Z Has data issue: false hasContentIssue false

Nitrogen-vacancy diamond sensor: novel diamond surfaces from ab initio simulations

Published online by Cambridge University Press:  29 August 2017

Jyh-Pin Chou
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, POB 49, H-1525, Hungary
Adam Gali*
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, POB 49, H-1525, Hungary Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111, Budapest, Hungary
*
Address all correspondence to Adam Gali at gali.adam@wigner.mta.hu
Get access

Abstract

The great properties of the paramagnetic nitrogen-vacancy (NV) color center in diamond predestine it for nanoscale sensor applications; however, these properties are often compromised when NV centers reside near diamond surface for sensing. Here we show in a mini review that first-principles calculations can characterize diamond surfaces and predict the ideal surface terminators to host NV sensors. We discuss technical issues on the modeling of NV centers close to diamond surfaces, and results on the most employed diamond (100) and the most promising (111) surfaces with various terminators involving hydrogen, oxygen, fluorine, and nitrogen are presented.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., de Walle, C.G.V., and Awschalom, D.D.: Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513 (2010).Google Scholar
2.Barry, J.F., Turner, M.J., Schloss, J.M., Glenn, D.R., Song, Y., Lukin, M.D., Park, H., and Walsworth, R.L.: Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA 113, 14133 (2016).Google Scholar
3.Schrand, A.M., Hens, S.A.C., and Shenderova, O.A.: Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18 (2009).Google Scholar
4.Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., and Yacoby, A.: A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320 (2012).Google Scholar
5.Le Sage, D., Arai, K., Glenn, D.R., DeVience, S.J., Pham, L.M., Rahn-Lee, L., Lukin, M.D., Yacoby, A., Komeili, A., and Walsworth, R.L.: Optical magnetic imaging of living cells. Nature 496, 486 (2013).Google Scholar
6.Shi, F., Zhang, Q., Wang, P., Sun, H., Wang, J., Rong, X., Chen, M., Ju, C., Reinhard, F., Chen, H., Wrachtrup, J., Wang, J., and Du, J.: Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135 (2015).Google Scholar
7.Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., and Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009).Google Scholar
8.Wrachtrup, J.: Defect center room-temperature quantum processors. Proc. Natl. Acad. Sci. USA 107, 9479 (2010).Google Scholar
9.Rondin, L., Tetienne, J.-P., Hingant, T., Roch, J.-F., Maletinsky, P., and Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).Google Scholar
10.Hong, S., Grinolds, M.S., Pham, L.M., Sage, D.L., Luan, L., Walsworth, R.L., and Yacoby, A.: Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155 (2013).Google Scholar
11.Steinert, S., Ziem, F., Hall, L.T., Zappe, A., Schweikert, M., Götz, N., Aird, A., Balasubramanian, G., Hollenberg, L., and Wrachtrup, J.: Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 2588 (2013).Google Scholar
12.Kolkowitz, S., Safira, A., High, A.A., Devlin, R.C., Choi, S., Unterreithmeier, Q.P., Patterson, D., Zibrov, A.S., Manucharyan, V.E., Park, H., and Lukin, M.D.: Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129 (2015).Google Scholar
13.DeVience, S.J., Pham, L.M., Lovchinsky, I., Sushkov, A.O., Bar-Gill, N., Belthangady, C., Casola, F., Corbett, M., Zhang, H., Lukin, M., Park, H., Yacoby, A., and Walsworth, R.L.: Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129 (2015).Google Scholar
14.Laraoui, A., Dolde, F., Burk, C., Reinhard, F., Wrachtrup, J., and Meriles, C.A.: High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 2685 (2013).Google Scholar
15.Müller, C., Kong, X., Cai, J.-M., Melentijević, K., Stacey, A., Markham, M., Twitchen, D., Isoya, J., Pezzagna, S., Meijer, J., Du, J.F., Plenio, M.B., Naydenov, B., McGuinness, L.P., and Jelezko, F.: Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703 (2014).Google Scholar
16.Chen, X. and Zhang, W.: Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734 (2017).Google Scholar
17.Cai, J., Retzker, A., Jelezko, F., and Plenio, M.B.: A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168 (2013).Google Scholar
18.Balents, L.: Spin liquids in frustrated magnets. Nature 464, 199 (2010).Google Scholar
19.Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H., and Schiffer, P.: Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303 (2006).Google Scholar
20.Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., and Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011).Google Scholar
21.Rondin, L., Dantelle, G., Slablab, A., Grosshans, F., Treussart, F., Bergonzo, P., Perruchas, S., Gacoin, T., Chaigneau, M., Chang, H.-C., Jacques, V., and Roch, J.-F.: Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010).Google Scholar
22.Rosskopf, T., Dussaux, A., Ohashi, K., Loretz, M., Schirhagl, R., Watanabe, H., Shikata, S., Itoh, K.M., and Degen, C.L.: Investigation of Surface Magnetic Noise by Shallow Spins in Diamond. Phys. Rev. Lett. 112, 147602 (2014).Google Scholar
23.Ofori-Okai, B.K., Pezzagna, S., Chang, K., Loretz, M., Schirhagl, R., Tao, Y., Moores, B.A., Groot-Berning, K., Meijer, J., and Degen, C.L.: Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).Google Scholar
24.Ohno, K., Heremans, F.J., Bassett, L.C., Myers, B.A., Toyli, D.M., Jayich, A.C.B., Palmstrøm, C.J., and Awschalom, D.D.: Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).Google Scholar
25.Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A.V., and Rabeau, J.R.: Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345 (2010).Google Scholar
26.Santori, C., Barclay, P.E., Fu, K.-M.C., and Beausoleil, R.G.: Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing. Phys. Rev. B 79, 125313 (2009).Google Scholar
27.Cui, J.B., Ristein, J., and Ley, L.: Dehydrogenation and the surface phase transition on diamond (111): Kinetics and electronic structure. Phys. Rev. B 59, 5847 (1999).Google Scholar
28.Petráková, V., Taylor, A., Kratochvílová, I., Fendrych, F., Vacík, J., Kučka, J., Štursa, J., Cígler, P., Ledvina, M., Fišerová, A., Kneppo, P., and Nesládek, M.: Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 22, 812 (2012).Google Scholar
29.Fu, K.-M.C., Santori, C., Barclay, P.E., and Beausoleil, R.G.: Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 96, 121907 (2010).Google Scholar
30.Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P.A., Sennour, M., Thorel, A., Börsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P.R., Jelezko, F., and Wrachtrup, J.: Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959 (2009).Google Scholar
31.Myers, B.A., Das, A., Dartiailh, M.C., Ohno, K., Awschalom, D.D., and Bleszynski Jayich, A.C.: Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).Google Scholar
32.Romach, Y., Müller, C., Unden, T., Rogers, L.J., Isoda, T., Itoh, K.M., Markham, M., Stacey, A., Meijer, J., Pezzagna, S., Naydenov, B., McGuinness, L.P., Bar-Gill, N., and Jelezko, F.: Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601 (2015).Google Scholar
33.Bansal, R.C., Vastola, F.J., and Walker, P.L.: Kinetics of chemisorption of oxygen on diamond. Carbon 10, 443 (1972).Google Scholar
34.Osipov, V.Y., Shames, A.I., and Vul’, A.Y.: Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds. Phys. B: Condens. Matter 404, 4522 (2009).Google Scholar
35.Doherty, M.W., Dolde, F., Fedder, H., Jelezko, F., Wrachtrup, J., Manson, N.B., and Hollenberg, L.C.L.: Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).Google Scholar
36.Edmonds, A.M., D'Haenens-Johansson, U.F.S., Cruddace, R.J., Newton, M.E., Fu, K.-M.C., Santori, C., Beausoleil, R.G., Twitchen, D.J., and Markham, M.L.: Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys. Rev. B 86, 035201 (2012).Google Scholar
37.Lesik, M., Plays, T., Tallaire, A., Achard, J., Brinza, O., William, L., Chipaux, M., Toraille, L., Debuisschert, T., Gicquel, A., Roch, J.F., and Jacques, V.: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates. Diam. Relat. Mater. 56, 47 (2015).Google Scholar
38.Lesik, M., Tetienne, J.-P., Tallaire, A., Achard, J., Mille, V., Gicquel, A., Roch, J.-F., and Jacques, V.: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl. Phys. Lett. 104, 113107 (2014).Google Scholar
39.Atumi, M.K., Goss, J.P., Briddon, P.R., and Rayson, M.J.: Atomistic modeling of the polarization of nitrogen centers in diamond due to growth surface orientation. Phys. Rev. B 88, 245301 (2013).Google Scholar
40.Kaviani, M., Deák, P., Aradi, B., Frauenheim, T., Chou, J.-P., and Gali, A.: Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett. 14, 4772 (2014).Google Scholar
41.Chou, J.-P., Retzker, A., and Gali, A.: Nitrogen-terminated diamond (111) surface for room-temperature quantum sensing and simulation. Nano Lett. 17, 22942298 (2017).Google Scholar
42.Chu, Y., de Leon, N.P., Shields, B.J., Hausmann, B., Evans, R., Togan, E., Burek, M.J., Markham, M., Stacey, A., Zibrov, A.S., Yacoby, A., Twitchen, D.J., Loncar, M., Park, H., Maletinsky, P., and Lukin, M.D.: Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982 (2014).Google Scholar
43.Sushkov, A.O., Lovchinsky, I., Chisholm, N., Walsworth, R.L., Park, H., and Lukin, M.D.: Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).Google Scholar
44.Lovchinsky, I., Sushkov, A.O., Urbach, E., de Leon, N.P., Choi, S., Greve, K.D., Evans, R., Gertner, R., Bersin, E., Müller, C., McGuinness, L., Jelezko, F., Walsworth, R.L., Park, H., and Lukin, M.D.: Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836 (2016).Google Scholar
45.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
46.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).Google Scholar
47.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
48.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).Google Scholar
49.Gali, A., Janzén, E., Deák, P., Kresse, G., and Kaxiras, E.: Theory of spin-conserving excitation of the N-V-center in diamond. Phys. Rev. Lett. 103, 186404 (2009).Google Scholar
50.Deák, P., Aradi, B., Frauenheim, T., Janzén, E., and Gali, A.: Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81, 153203 (2010).Google Scholar
51.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
52.Lenef, A. and Rand, S.C.: Electronic structure of the N-V center in diamond: theory. Phys. Rev. B 53, 13441 (1996).Google Scholar
53.Gali, A., Fyta, M., and Kaxiras, E.: Ab initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys. Rev. B 77, 155206 (2008).Google Scholar
54.Larsson, J.A. and Delaney, P.: Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B 77, 165201 (2008).Google Scholar
55.Nizovtsev, A.P., Kilin, S.Y., Pushkarchuk, A.L., Pushkarchuk, V.A., and Jelezko, F.: Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]H172 diamond cluster hosting nitrogen-vacancy center. New J. Phys. 16, 083014 (2014).Google Scholar
56.Deng, B., Zhang, R.Q., and Shi, X.Q.: New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond. Sci. Rep. 4, srep05144 (2014).Google Scholar
57.Alkauskas, A., Buckley, B.B., Awschalom, D.D., and de Walle, C.G.V.: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. New J. Phys. 16, 073026 (2014).Google Scholar
58.Loubser, J.H.N. and van Wyk, J.A.: Diamond Research (London) (Industrial Diamond Information Bureau, London, 1977), pp. 1115.Google Scholar
59.Ihm, J., Zunger, A., and Cohen, M.L.: Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys. 12, 4409 (1979).Google Scholar
60.Leslie, M. and Gillan, N.J.: The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J. Phys. C: Solid State Phys. 18, 973 (1985).Google Scholar
61.Makov, G. and Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014 (1995).Google Scholar
62.Castleton, C.W.M. and Mirbt, S.: Finite-size scaling as a cure for supercell approximation errors in calculations of neutral native defects in InP. Phys. Rev. B 70, 195202 (2004).Google Scholar
63.Dabo, I., Kozinsky, B., Singh-Miller, N.E., and Marzari, N.: Electrostatics in periodic boundary conditions and real-space corrections. Phys. Rev. B 77, 115139 (2008).Google Scholar
64.Lany, S. and Zunger, A.: Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008).Google Scholar
65.Freysoldt, C., Neugebauer, J., and Van de Walle, C.G.: Fully ab initio finite-size corrections for charged-defect Supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).Google Scholar
66.Hine, N.D.M., Frensch, K., Foulkes, W.M.C., and Finnis, M.W.: Supercell size scaling of density functional theory formation energies of charged defects. Phys. Rev. B 79, 024112 (2009).Google Scholar
67.Taylor, S.E. and Bruneval, F.: Understanding and correcting the spurious interactions in charged supercells. Phys. Rev. B 84, 075155 (2011).Google Scholar
68.Ramprasad, R., Zhu, H., Rinke, P., and Scheffler, M.: New perspective on formation energies and energy levels of point defects in nonmetals. Phys. Rev. Lett. 108, 066404 (2012).Google Scholar
69.Kumagai, Y. and Oba, F.: Electrostatics-based finite-size corrections for first-principles point defect calculations. Phys. Rev. B 89, 195205 (2014).Google Scholar
70.de Walle, C.G.V. and Neugebauer, J.: First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).Google Scholar
71.Castleton, C.W.M., Höglund, A., and Mirbt, S.: Managing the supercell approximation for charged defects in semiconductors: Finite-size scaling, charge correction factors, the band-gap problem, and the ab initio dielectric constant. Phys. Rev. B 73, 035215 (2006).Google Scholar
72.Komsa, H.-P. and Pasquarello, A.: Finite-size supercell correction for charged defects at surfaces and interfaces. Phys. Rev. Lett. 110, 095505 (2013).Google Scholar
73.Komsa, H.-P., Berseneva, N., Krasheninnikov, A.V., and Nieminen, R.M.: Charged point defects in the Flatland: accurate formation energy calculations in two-dimensional materials. Phys. Rev. X 4, 031044 (2014).Google Scholar
74.Lozovoi, A.Y. and Alavi, A.: Reconstruction of charged surfaces: general trends and a case study of Pt(110) and Au(110). Phys. Rev. B 68, 245416 (2003).Google Scholar
75.Noh, J.-Y., Kim, H., and Kim, Y.-S.: Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 89, 205417 (2014).Google Scholar
76.Hellström, M., Spångberg, D., Hermansson, K., and Broqvist, P.: Band-filling correction method for accurate adsorption energy calculations: a Cu/ZnO case study. J. Chem. Theory Comput. 9, 4673 (2013).Google Scholar
77.Richter, N.A., Sicolo, S., Levchenko, S.V., Sauer, J., and Scheffler, M.: Concentration of vacancies at metal-oxide surfaces: case study of MgO(100). Phys. Rev. Lett. 111, 045502 (2013).Google Scholar
78.Moll, N., Xu, Y., Hofmann, O.T., and Rinke, P.: Stabilization of semiconductor surfaces through bulk dopants. New J. Phys. 15, 083009 (2013).Google Scholar
79.Wei, S.-H. and Zunger, A.: Disorder effects on the density of states of the II–VI semiconductor alloys Hg0.5Cd0.5Te, Cd0.5Zn0.5Te, and Hg0.5Zn0.5Te. Phys. Rev. B 43, 1662 (1991).Google Scholar
80.Singh, D.J.: Electronic structure and doping in BaFe2As2 and LiFeAs: density functional calculations. Phys. Rev. B 78, 094511 (2008).Google Scholar
81.Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., and Scheffler, M.: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175 (2009).Google Scholar
82.Vinichenko, D., Sensoy, M.G., Friend, C.M., and Kaxiras, E.: Accurate formation energies of charged defects in solids: a systematic approach. Phys. Rev. B 95, 235310 (2017).Google Scholar
83.Pinto, H., Jones, R., Palmer, D.W., Goss, J.P., Tiwari, A.K., Briddon, P.R., Wright, N.G., Horsfall, A.B., Rayson, M.J., and Öberg, S.: First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys. Rev. B 86, 045313 (2012).Google Scholar
84.Lany, S. and Zunger, A.: Many-body GW calculation of the oxygen vacancy in ZnO. Phys. Rev. B 81, 113201 (2010).Google Scholar
85.Sque, S.J., Jones, R., and Briddon, P.R.: Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 73, 085313 (2006).Google Scholar
86.Zhao, S. and Larsson, K.: Theoretical study of the energetic stability and geometry of terminated and B-doped diamond (111) surfaces. J. Phys. Chem. C 118, 1944 (2014).Google Scholar
87.Hassan, M.M. and Larsson, K.: Effect of surface termination on diamond (100) surface electrochemistry. J. Phys. Chem. C 118, 22995 (2014).Google Scholar
88.Tiwari, A.K., Goss, J.P., Briddon, P.R., Horsfall, A.B., Wright, N.G., Jones, R., and Rayson, M.J.: Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films. Europhys. Lett. 108, 46005 (2014).Google Scholar
89.Song, Y. and Larsson, K.: A theoretical study of dye molecules adsorbed onto diamond (111) surfaces. Phys. Status Solidi A 213, 2105 (2016).Google Scholar
90.Mulliken, R.S.: The Rydberg states of molecules.1a parts I–V1b. J. Am. Chem. Soc. 86, 3183 (1964).Google Scholar
91.Vörös, M. and Gali, A.: Optical absorption of diamond nanocrystals from ab initio density-functional calculations. Phys. Rev. B 80, 161411 (2009).Google Scholar
92.Shockley, W.: On the surface states associated with a periodic potential. Phys. Rev. 56, 317 (1939).Google Scholar
93.Han, P., Antonov, D., Wrachtrup, J., and Bester, G.: Surface-bound states in nanodiamonds. Phys. Rev. B 95, 195428 (2017).Google Scholar
94.Hauf, M.V., Grotz, B., Naydenov, B., Dankerl, M., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., and Garrido, J.A.: Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B 83, 081304 (2011).Google Scholar
95.Pehrsson, P.E. and Mercer, T.W.: Oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 460, 49 (2000).Google Scholar
96.Derry, T.E., Makau, N.W., and Stampfl, C.: Oxygen adsorption on the (1 × 1) and (2 × 1) reconstructed C(111) surfaces: a density functional theory study. J. Phys. Condens. Matter 22, 265007 (2010).Google Scholar
97.de Theije, F.K., Reedijk, M.F., Arsic, J., van Enckevort, W.J.P., and Vlieg, E.: Atomic structure of diamond {111} surfaces etched in oxygen water vapor. Phys. Rev. B 64, 085403 (2001).Google Scholar
98.Kondo, T., Honda, K., Tryk, D.A., and Fujishima, A.: Covalent modification of single-crystal diamond electrode surfaces. J. Electrochem. Soc. 152, E18 (2005).Google Scholar
99.Havlik, J., Raabova, H., Gulka, M., Petrakova, V., Krecmarova, M., Masek, V., Lousa, P., Stursa, J., Boyen, H.-G., Nesladek, M., and Cigler, P.: Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 26, 4134 (2016).Google Scholar
100.Schvartzman, M. and Wind, S.J.: Plasma fluorination of diamond-like carbon surfaces: mechanism and application to nanoimprint lithography. Nanotechnology 20, 145306 (2009).Google Scholar
101.Rietwyk, K.J., Wong, S.L., Cao, L., O'Donnell, K.M., Ley, L., Wee, A.T.S., and Pakes, C.I.: Work function and electron affinity of the fluorine-terminated (100) diamond surface. Appl. Phys. Lett. 102, 091604 (2013).Google Scholar
102.Tiwari, A.K., Goss, J.P., Briddon, P.R., Wright, N.G., Horsfall, A.B., Jones, R., Pinto, H., and Rayson, M.J.: Calculated electron affinity and stability of halogen-terminated diamond. Phys. Rev. B 84, 245305 (2011).Google Scholar
103.Szilvási, T. and Gali, A.: Fluorine modification of the surface of diamondoids: a time-dependent density functional study. J. Phys. Chem. C 118, 4410 (2014).Google Scholar
104.Siyushev, P., Pinto, H., Vörös, M., Gali, A., Jelezko, F., and Wrachtrup, J.: Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett. 110, 167402 (2013).Google Scholar
105.Chaney, J.A. and Feigerle, C.S.: Characterization of chlorinated chemical vapor deposited and natural (100) diamond. Surf. Sci. 425, 245 (1999).Google Scholar
106.O'Donnell, K.M., Edmonds, M.T., Tadich, A., Thomsen, L., Stacey, A., Schenk, A., Pakes, C.I., and Ley, L.: Extremely high negative electron affinity of diamond via magnesium adsorption. Phys. Rev. B 92, 035303 (2015).Google Scholar
107.Schenk, A., Tadich, A., Sear, M., O'Donnell, K.M., Ley, L., Stacey, A., and Pakes, C.: Formation of a silicon terminated (100) diamond surface. Appl. Phys. Lett. 106, 191603 (2015).Google Scholar
108.Schenk, A.K., Tadich, A., Sear, M.J., Qi, D., Wee, A.T.S., Stacey, A., and Pakes, C.I.: The surface electronic structure of silicon terminated (100) diamond. Nanotechnology 27, 275201 (2016).Google Scholar
109.Stacey, A., O'Donnell, K.M., Chou, J.-P., Schenk, A., Tadich, A., Dontschuk, N., Cervenka, J., Pakes, C., Gali, A., Hoffman, A., and Prawer, S.: Nitrogen terminated diamond. Adv. Mater. Interfaces 2, 1500079 (2015).Google Scholar
110.Chandran, M., Shasha, M., Michaelson, S., and Hoffman, A.: Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: an in-situ x-ray photoemission spectroscopy and secondary electron emission studies. Appl. Phys. Lett. 107, 111602 (2015).Google Scholar
111.Chandran, M., Shasha, M., Michaelson, S., Akhvlediani, R., and Hoffman, A.: Incorporation of nitrogen into polycrystalline diamond surfaces by RF plasma nitridation process at different temperatures: Bonding configuration and thermal stability studies by in situ XPS and HREELS. Phys. Status Solidi A 212, 2487 (2015).Google Scholar