Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-5rzhg Total loading time: 0.273 Render date: 2021-11-30T11:53:54.860Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics

Published online by Cambridge University Press:  12 September 2017

S. Pedron
Affiliation:
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
H. Polishetty
Affiliation:
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
A.M. Pritchard
Affiliation:
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
B.P. Mahadik
Affiliation:
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
J.N. Sarkaria
Affiliation:
Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
B.A.C. Harley*
Affiliation:
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Lab., 600 S. Mathews Avenue, Urbana, IL 61801, USA
*
Address all correspondence to B.A.C. Harley at bharley@illinois.edu
Get access

Abstract

While preclinical models such as orthotopic tumors generated in mice from patient-derived specimens are widely used to predict sensitivity or therapeutic interventions for cancer, such xenografts can be slow, require extensive infrastructure, and can make in situ assessment difficult. Such concerns are heightened in highly aggressive cancers, such as glioblastoma (GBM), that display genetic diversity and short mean survival. Biomimetic biomaterial technologies offer an approach to create ex vivo models that reflect biophysical features of the tumor microenvironment (TME). We describe a microfluidic templating approach to generate spatially graded hydrogels containing patient-derived GBM cells to explore drug efficacy and resistance mechanisms.

Type
Biomaterials for 3D Cell Biology Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803 (2016).CrossRefGoogle ScholarPubMed
2.Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A., Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., Chin, L., DePinho, R.A., and Cavenee, W.K.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683 (2007).CrossRefGoogle ScholarPubMed
3.Johnson, D.R. and O'Neill, B.P.: Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol. 107, 359 (2012).CrossRefGoogle ScholarPubMed
4.Charles, N.A., Holland, E.C., Gilbertson, R., Glass, R., and Kettenmann, H.: The brain tumor microenvironment. Glia 59, 1169 (2011).CrossRefGoogle ScholarPubMed
5.Jackson, C., Ruzevick, J., Phallen, J., Belcaid, Z., and Lim, M.: Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 2011, 20 (2011).CrossRefGoogle ScholarPubMed
6.Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R.C., Ludwin, S.K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J.G., Eisenhauer, E., and Mirimanoff, R.O.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987 (2005).CrossRefGoogle ScholarPubMed
7.Okada, M., Saio, M., Kito, Y., Ohe, N., Yano, H., Yoshimura, S., Iwama, T., and Takami, T.: Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int. J. Oncol. 34, 1621 (2009).Google Scholar
8.Lathia, J.D., Mack, S.C., Mulkearns-Hubert, E.E., Valentim, C.L., and Rich, J.N.: Cancer stem cells in glioblastoma. Genes Dev. 29, 1203 (2015).CrossRefGoogle ScholarPubMed
9.Thaker, N.G. and Pollack, I.F.: Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies. Expert Rev. Neurother. 9, 1815 (2009).CrossRefGoogle ScholarPubMed
10.Huang, T.T., Sarkaria, S.M., Cloughesy, T.F., and Mischel, P.S.: Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics 6, 500 (2009).CrossRefGoogle ScholarPubMed
11.Misra, S., Toole, B.P., and Ghatak, S.: Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J. Biol. Chem. 281, 34936 (2006).CrossRefGoogle ScholarPubMed
12.Rape, A., Ananthanarayanan, B., and Kumar, S.: Engineering strategies to mimic the glioblastoma microenvironment. Adv. Drug Delivery. Rev. 79–80, 172 (2014).CrossRefGoogle ScholarPubMed
13.Roth, P. and Weller, M.: Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol. 16, viii14 (2014).CrossRefGoogle ScholarPubMed
14.Taylor, T.E., Furnari, F.B., and Cavenee, W.K.: Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr. Cancer Drug Targets 12, 197 (2012).CrossRefGoogle ScholarPubMed
15.Schulte, A., Liffers, K., Kathagen, A., Riethdorf, S., Zapf, S., Merlo, A., Kolbe, K., Westphal, M., and Lamszus, K.: Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110δ. Neuro Oncol. 15, 1289 (2013).CrossRefGoogle ScholarPubMed
16.Slomiany, M.G., Dai, L., Bomar, P.A., Knackstedt, T.J., Kranc, D.A., Tolliver, L., Maria, B.L., and Toole, B.P.: Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res. 69, 4992 (2009).CrossRefGoogle ScholarPubMed
17.Pedron, S., Becka, E., and Harley, B.A.: Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv. Mater. 27, 1567 (2015).CrossRefGoogle ScholarPubMed
18.Heddleston, J.M., Hitomi, M., Venere, M., Flavahan, W.A., Yan, K., Kim, Y., Minhas, S., Rich, J.N., and Hjelmeland, A.B.: Glioma stem cell maintenance: the role of the microenvironment. Curr. Pharm. Des. 17, 2386 (2011).CrossRefGoogle ScholarPubMed
19.Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., Alexe, G., Lawrence, M., O'Kelly, M., Tamayo, P., Weir, B.A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H.S., Hodgson, J.G., James, C.D., Sarkaria, J.N., Brennan, C., Kahn, A., Spellman, P.T., Wilson, R.K., Speed, T.P., Gray, J.W., Meyerson, M., Getz, G., Perou, C.M., Hayes, D.N., and Canc Genome Atlas Res, N.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98 (2010).CrossRefGoogle ScholarPubMed
20.Westermark, B.: Glioblastoma—a moving target. Ups. J. Med. Sci. 117, 251 (2012).CrossRefGoogle Scholar
21.Hambardzumyan, D., Cheng, Y.-K., Haeno, H., Holland, E.C., and Michor, F.: The probable cell of origin of NF1- and PDGF-driven glioblastomas. PLoS ONE 6, e24454 (2011).CrossRefGoogle ScholarPubMed
22.Labussiere, M., Sanson, M., Idbaih, A., and Delattre, J.Y.: IDH1 gene mutations: a new paradigm in glioma prognosis and therapy? Oncologist 15, 196 (2010).CrossRefGoogle ScholarPubMed
23.Rich, J.N., Hans, C., Jones, B., Iversen, E.S., McLendon, R.E., Rasheed, B.K., Dobra, A., Dressman, H.K., Bigner, D.D., Nevins, J.R., and West, M.: Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 65, 4051 (2005).CrossRefGoogle ScholarPubMed
24.Sarkaria, J.N., Yang, L., Grogan, P.T., Kitange, G.J., Carlson, B.L., Schroeder, M.A., Galanis, E., Giannini, C., Wu, W., Dinca, E.B., and James, C.D.: Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol. Cancer Ther. 6, 1167 (2007).CrossRefGoogle ScholarPubMed
25.Sarkaria, J.N., Carlson, B.L., Schroeder, M.A., Grogan, P., Brown, P.D., Giannini, C., Ballman, K.V., Kitange, G.J., Guha, A., Pandita, A., and James, C.D.: Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin. Cancer Res. 12, 2264 (2006).CrossRefGoogle ScholarPubMed
26.Giannini, C., Sarkaria, J.N., Saito, A., Uhm, J.H., Galanis, E., Carlson, B.L., Schroeder, M.A., and James, C.D.: Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol. 7, 164 (2005).CrossRefGoogle Scholar
27.Pedron, S., Becka, E., and Harley, B.A.C.: Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 34, 7408 (2013).CrossRefGoogle ScholarPubMed
28.Mahadik, B.P., Wheeler, T.D., Skertich, L.J., Kenis, P.J., and Harley, B.A.: Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv. Healthc. Mater. 3, 449 (2014).CrossRefGoogle ScholarPubMed
29.Mahadik, B.P., Pedron Haba, S., Skertich, L.J., and Harley, B.A.C.: The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 67, 297 (2015).CrossRefGoogle ScholarPubMed
30.Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983).CrossRefGoogle ScholarPubMed
31.Duffy, G.P., McFadden, T.M., Byrne, E.M., Gill, S.L., Farrell, E., and O'Brien, F.J.: Towards in vitro vascularisation of collagen-GAG scaffolds. Eur. Cells Mater. 21, 15 (2011).CrossRefGoogle ScholarPubMed
32.Livak, K.J. and Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25, 402 (2001).CrossRefGoogle Scholar
33.Wiranowska, M.R. and Rojiani, M. V.: Extracellular matrix microenvironment in glioma progression, in Glioma—Exploring Its Biology and Practical Relevance, edited by Ghosh, A. (InTech, Rijeka, Croatia, 2011), p. 257.Google Scholar
34.Endersby, R. and Baker, S.J.: PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene 27, 5416 (2008).CrossRefGoogle ScholarPubMed
35.Perez, A., Neskey, D.M., Wen, J., Pereira, L., Reategui, E.P., Goodwin, W.J., Carraway, K.L., and Franzmann, E.J.: CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 49, 306 (2013).CrossRefGoogle ScholarPubMed
36.Cha, J., Kang, S.-G., and Kim, P.: Strategies of mesenchymal invasion of patient-derived brain tumors: microenvironmental adaptation. Sci. Rep. 6, 24912 (2016).CrossRefGoogle ScholarPubMed
37.Toole, B.P.: Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528 (2004).CrossRefGoogle ScholarPubMed
38.Tsatas, D., Kanagasundaram, V., Kaye, A., and Novak, U.: EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J. Clin. Neurosci. 9, 282 (2002).CrossRefGoogle ScholarPubMed
39.Chen, J.-W., Pedron, S. and Harley, B.A.C.: The combined influence of hydrogel stiffness and matrix-bound hyaluronic acid content on glioblastoma invasion. Macromol. Biosci. 17, 1616 (2017).CrossRefGoogle ScholarPubMed
40.Klank, R.L., Decker Grunke, S.A., Bangasser, B.L., Forster, C.L., Price, M.A., Odde, T.J., SantaCruz, K.S., Rosenfeld, S.S., Canoll, P., Turley, E.A., McCarthy, J.B., Ohlfest, J.R., and Odde, D.J.: Biphasic dependence of glioma survival and cell migration on CD44 expression level. Cell Rep. 18, 23.CrossRefGoogle Scholar
41.Mendelsohn, J. and Baselga, J.: Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21, 2787 (2003).CrossRefGoogle ScholarPubMed
42.Akita, R.W. and Sliwkowski, M.X.: Preclinical studies with erlotinib (Tarceva). Semin. Oncol. 30, 15 (2003).CrossRefGoogle Scholar
43.Wang, S.J. and Bourguignon, L.Y.W.: Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am. J. Pathol. 178, 956 (2011).CrossRefGoogle ScholarPubMed
44.Holohan, C., Van Schaeybroeck, S., Longley, D.B., and Johnston, P.G.: Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714 (2013).CrossRefGoogle Scholar
45.Ohashi, R., Takahashi, F., Cui, R., Yoshioka, M., Gu, T., Sasaki, S., Tominaga, S., Nishio, K., Tanabe, K.K., and Takahashi, K.: Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 252, 225 (2007).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Pedron et al supplementary material 1

Pedron et al supplementary material

Download Pedron et al supplementary material 1(PDF)
PDF 209 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *