Skip to main content

An ancient method-inspired route for fast fabrication of ‘PbS bird feathers’

  • Xiaowei Liu (a1), Yongwen Tan (a1), Fangyu Zhang (a1), Peilu Ouyang (a2), Jiajun Gu (a3) and Di Zhang (a3)...

Many studies have been carried out to thoroughly understand the colorization mechanisms of bird feathers. However, most of the methods used so far are time-consuming (in days) and involve rather complicated steps (5 to 12). Here, we report a rapid way of producing ‘PbS bird feathers’; this method is inspired by a hair-dyeing method used in ancient Egypt 4000 years ago. The complete synthesis route comprises only two steps and can be completed within 2 h, with the original morphologies of bird feathers well preserved. This method has potential to be extended to the fast fabrication of other functional sulfides which are too complicated to fabricate otherwise.

Corresponding author
Address all correspondence to Jiajun Gu and Di Zhang and
Hide All
1Prum R.O., Torres R.H., Williamson S. and Dyck J.: Coherent light scattering by blue feather barbs. Nature 396, 28 (1998).
2Shi L., Yin H.W., Zhang R.Y., Liu X.H., Zi J. and Zhao D.Y.: Macroporous oxide structures with short-range order and bright structural coloration: a replication from parrot feather barbs. J. Mater. Chem. 20, 90 (2010).
3Vukusic P. and Sambles J.R.: Photonic structures in biology. Nature 424, 852 (2003).
4Yablonovitch E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).
5John S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).
6Noh H., Liew S.F., Saranathan V., Mochrie S.G.J., Prum R.O., Dufresne E.R. and Cao H.: How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 22, 2871 (2010).
7Kinoshita S., Yoshioka S. and Miyazaki J.: Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).
8Han J., Su H.L., Zhang C.F., Dong Q., Zhang W. and Zhang D.: Embedment of ZnO nanoparticles in the natural photonic crystals within Peacock feathers. Nanotechnology 19, 365602 (2008).
9Han J., Su H.L., Song F., Gu J.-J., Zhang D. and Jang L.M.: Novel photonic crystals: incorporation of nano-CdS into the natural photonic crystals within Peacock feathers. Langmuir 25, 3207 (2009).
10Walter P., Welcomme E., Hallegot P., Zaluzec N.J., Deeb C., Castaing J., Veyssiere P., Breniaux R., Leveque J.-L. and Tsoucaris G.: Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett. 6, 2215 (2006).
11Yu M.K., Wu P., Widelitz R.B. and Chuong C.-M.: The morphogenesis of feathers. Nature 21, 308 (2002).
12Aposhian H.V. and Aposhian M.M.: Meso-2,3-dimercaptosuccinic acid: chemical, pharmacological and toxicological properties of an orally effective metal chelating agent. Annu. Rev. Pharmacool. Toxicol. 30, 279 (1990).
13Stohs S.J. and Bagchi D.: Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18, 321 (1995).
14Weiss I.M. and Kirchner H.O.K.: Plasticity of two structural proteins: alpha-collagen and beta-keratin. J. Mech. Behav. Biomed. 4, 733 (2011).
15Fraser R.D.B. and Parry D.A.D.: Molecular packing in the feather keratin filament. J. Struct. Biol. 162, 1 (2008).
16Fraser R.D.B. and Parry D.A.D.: The structural basis of the two-dimensional net pattern observed in the X-ray diffraction pattern of avian keratin. J. Struct. Biol. 176, 340 (2011).
17Vasconcelos A., Freddi G. and Cavaco-Paulo A.: Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9, 1299 (2008).
18Prum R.O. and Dyck J.: A hierarchical model of plumage: morphology, development, and evolution. J. Exp. Zool. Part B. 298B, 73 (2003).
19Prum R.O.: Development and evolutionary origin of feathers. J. Exp. Zool. 285, 291 (1999).
20Prum R.O., Torres R., Williamson S. and Dyck J.: Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proceedings of the Royal Society B: Biological Sciences 266, 13 (1999).
21Aguirre C.I., Reguera E. and Stein A.: Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20, 2565 (2010).
22Zollfrank C. and Scheel H.: Regioselectively ordered silica nanotubes by molecular templating. Adv. Mater. 19, 984 (2007).
23Kostova M.H., Zollfrank C., Batentschuk M., Goetz-Neunhoeffer F., Winnacker A. and Greil P.: Bioinspired design of SrAl2O4:Eu2+ phosphor. Adv. Funct. Mater. 19, 599 (2009).
24Tan Y.W., Gu J.-J., Zang X.N., Xu W., Shi K.C., Xu L.H. and Zhang D.: Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew. Chem. Int. Ed. 50, 8307 (2011).
25Tan Y.W., Gu J.-J., Xu L.H., Zang X.N., Liu D.X., Zhang W., Liu Q.L., Zhu S.M., Su H.L., Feng C.L., Fan G.L. and Zhang D.: High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv. Funct. Mater. 22, 1578 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Materials

Liu Supplementary Material

 Word (10.0 MB)
10.0 MB


Full text views

Total number of HTML views: 2
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.