Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T11:46:50.327Z Has data issue: false hasContentIssue false

Anodically grown functional oxide nanotubes and applications

Published online by Cambridge University Press:  24 October 2016

B. Manmadha Rao
Affiliation:
Nanomaterials and Devices Laboratory, Department of Physics, University of Houston, Houston, TX 77204, USA.
Aida Torabi
Affiliation:
Nanomaterials and Devices Laboratory, Department of Physics, University of Houston, Houston, TX 77204, USA.
Oomman K. Varghese*
Affiliation:
Nanomaterials and Devices Laboratory, Department of Physics, University of Houston, Houston, TX 77204, USA.
*
Address all correspondence to Oomman K. Varghese at okvarghese@uh.edu
Get access

Abstract

Among various material nanoarchitectures, the nanotube geometry has received incredible attention due to the unique properties provided by its high surface area as well as nanoscale wall thickness and the availability of a variety of techniques to fabricate them. Since the beginning of this century, anodization has emerged as one of the most effective techniques for the fabrication of functional oxide nanotubes. Oxide nanotubes of a number of metals and alloys have been developed using this versatile technique. We review here the research activities on anodic nanotubes of various binary, ternary, and multinary materials and their selected applications.

Type
Prospective Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ogale, S.B., Venkatesan, T.V., and Blamire, M.G.: Functional Metal Oxides: New Science and Novel Applications (Wiley–VCH, Weinheim, Germany, 2013).Google Scholar
2. Kalinin, S.V. and Spaldin, N.A.: Functional ion defects in transition metal oxides. Science 341, 858 (2013).Google Scholar
3. Bednorz, J.G. and Muller, K.A.: Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B: Condens. Matter 64, 189 (1986).Google Scholar
4. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C.W.: Superconductivity at 93 K in a new mixed phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987).Google Scholar
5. O'Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 35, 737 (1991).Google Scholar
6. Liu, M., Johnston, M.B., and Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395 (2013).CrossRefGoogle Scholar
7. Janotti, A. and Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 2 (2009).Google Scholar
8. Yin, M., Gu, Y., Kuskovsky, I.L., Andelman, T., Zhu, Y., Neumark, G.F., and O'Brien, S.: Zinc oxide quantum rods. J. Am. Chem. Soc. 126, 6206 (2004).Google Scholar
9. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).Google Scholar
10. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).Google Scholar
11. Bao, J., Zimmler, M.A., Capasso, F., Wang, X., and Ren, Z.F.: Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719 (2006).Google Scholar
12. Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., and Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007).Google Scholar
13. Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).Google Scholar
14. Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A., and Ong, K.G.: Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17, 398 (2006).Google Scholar
15. Varghese, O.K., Paulose, M., and Grimes, C.A.: Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4, 592 (2009).Google Scholar
16. Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731737 (2009).Google Scholar
17. Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., and Li, Y.: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690 (2012).Google Scholar
18. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., and Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007).Google Scholar
19. Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A.: TiO2 nanotube arrays of 1000 µm length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007).Google Scholar
20. Buff, H.: Ueber das electrische Verhalten des Aluminiums. Justus Liebigs Annalen der Chemie 102, 265 (1857).Google Scholar
21. Kujirai, T. and Ueki, S.: Process of coating metallic aluminum or aluminum alloys with aluminum oxide skin. United States Patent No. 1735286 (1923).Google Scholar
22. Lerner, L.: History of aluminum hard coating. Aluminium Int. Today. 16, 33 (2004).Google Scholar
23. Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).Google Scholar
24. Hoar, T.P. and Mott, N.F.: A mechanism for the formation of porous anodic oxide films on aluminum. J. Phys. Chem. Solids 9, 97 (1959).Google Scholar
25. O'Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. Lond. A 317, 511 (1970).Google Scholar
26. Lee, W. and Park, S.J.: Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 25, 1258 (2000).Google Scholar
27. Parkhutik, V.P. and Shershulsky, V.I.: Theoretical modelling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (2000).Google Scholar
28. Skeldon, P., Thompson, G.E., Garcia-Vargara, S.J., Iglesias-Rubianes, L., and Blanco-Pinzon, C.E.: A tracer study of porous anodic alumina. Electrochem. Solid-State Lett. 9, B47 (2006).Google Scholar
29. Garcia-Vergara, S.J., Skeldon, P., Thompson, G.E., and Habazaki, H.: A flow model of porous anodic film growth on aluminum. Electrohim. Acta 52, 681 (2006).Google Scholar
30. Houser, J.E. and Hebert, K.R.: The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 8, 415 (2009).CrossRefGoogle ScholarPubMed
31. Pu, L., Bao, X., Zou, J., and Feng, D.: Individual alumina nanotubes. Angew. Chem. Int. Ed. Engl. 40, 1490 (2001).Google Scholar
32. Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N., and Grimes, C.A.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 (2003).Google Scholar
33. Regonini, D., Bowen, C.R., Jaroenworaluck, A., and Stevens, R.: A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R 74, 377 (2013).CrossRefGoogle Scholar
34. Su, Z. and Zhou, W.: Formation mechanism of porous anodic aluminium and titanium oxides. Adv. Mater. 20, 3663 (2008).Google Scholar
35. Berger, S., Albu, S.P., Schmidt-Stein, F., Hildebrand, H., Schmuki, P., Hammond, J.S., Paul, D.F., and Reichlmaier, S.: The origin of tubular growth of TiO2 nanotubes: a fluoride rich layer between tub-walls. Surf. Sci. 605, L57 (2011).CrossRefGoogle Scholar
36. Katwal, G., Paulose, M., Rusakova, I.A., Martinez, J.E., and Varghese, O.K.: Rapid growth of zinc oxide nanotube-nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett. 11, 3014 (2016).Google Scholar
37. Zou, J.P., Pu, L., Bao, X.M., and Feng, D.: Branchy alumina nanotubes. Appl. Phys. Lett. 80, 1079 (2002).Google Scholar
38. Lee, W., Scholz, R., and Gosele, U.: A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett. 8, 2155 (2008).Google Scholar
39. Wang, Y., Santos, A., Evdokiou, A., and Losic, D.: Rational design of ultra-short anodic alumina nanotubes by short-time pulse anodization. Electrochim. Acta 154, 379 (2015).Google Scholar
40. Wang, Y., Kaur, G., Chen, Y., Santos, A., Losic, D., and Evdokiou, A.: Bioinert anodic alumina nanotubes for targeting of endoplasmic reticulum stress and autophagic signaling: a combinatorial nanotube-based drug delivery system for enhancing cancer therapy. ACS Appl. Mater. Interfaces 7, 27140 (2015).Google Scholar
41. Law, C.S., Santos, A., Nemati, M., and Losic, D.: Structural engineering of nanoporous anodic alumina photonic crystals by sawtooth-like pulse anodization. ACS Appl. Mater. Interfaces 8, 13542 (2016).Google Scholar
42. Assefpour-Dezfuly, M., Vlachos, C., and Andrews, E.H.: Oxide morphology and adhesive bonding on titanium surfaces. J. Mater Sci. 19, 3626 (1984).CrossRefGoogle Scholar
43. Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y., and Aucouturier, M.: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27, 629 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
44. Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).Google Scholar
45. Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., and Grimes, C.A.: Hydrogen sensing using titania nanotubes. Sens. Actuators B 93, 338 (2003).Google Scholar
46. Varghese, O.K., Gong, D.W., Paulose, M., Grimes, C.A., and Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).Google Scholar
47. Beranek, R., Hildebrand, H., and Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).Google Scholar
48. Richter, C., Panaitescu, E., Willey, R., and Menon, L.: Titania nanotubes prepared by anodization in fluorine-free acids. J. Mater. Res. 22, 1624 (2007).Google Scholar
49. Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., LaTempa, T.J., and Grimes, C.A.: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).Google Scholar
50. Cai, Q.Y., Paulose, M., Varghese, O.K., and Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).Google Scholar
51. Paulose, M., Varghese, O.K., Shankar, K., Mor, G.K., and Grimes, C.A.: Photoelectrochemical properties of highly-ordered titania nanotube-arrays. Mater. Res. Soc. Symp. Proc. 837, N3.13.1 (2005).Google Scholar
52. Macak, J.M., Sirotna, K., and Schmuki, P.: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 50, 3679 (2005).Google Scholar
53. Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K., and Grimes, C.A.: Application of highly-ordered TiO2 nanotube-arrays in dye-sensitized solar cells. J. Phys. D: Appl. Phys. 39, 2498 (2006).Google Scholar
54. Ruan, C.M., Paulose, M., Varghese, O.K., Mor, G.K., and Grimes, C.A.: Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 109, 15754 (2005).Google Scholar
55. Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S., and Schmuki, P.: Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. Engl. 44, 7463 (2005).Google Scholar
56. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., and Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. 110, 16179 (2006).Google Scholar
57. Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235 (2007).Google Scholar
58. Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C., and Grimes, C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).Google Scholar
59. Mor, G.K., Varghese, O.K., Paulose, M., and Grimes, C.A.: A self-cleaning, room temperature titania-nanotube hydrogen gas sensor. Sens. Lett. 1, 42 (2003).CrossRefGoogle Scholar
60. Varghese, O.K., Yang, X., Kendig, J., Paulose, M., Zeng, K., Palmer, C., Ong, K.G., and Grimes, C.A.: A transcutaneous hydrogen sensor: from design to application. Sens. Lett. 4, 120 (2006).CrossRefGoogle Scholar
61. Qin, P., Paulose, M., Ibrahim Dar, M., Moehl, T., Arora, N., Gao, P., Varghese, O.K., Gratzel, M. and Nazeeruddin, M.K.: Stable and efficient perovskite solar cells based on titania nanotube arrays. Small 11, 5533 (2015).Google Scholar
62. Brahmi, H., Katwal, G., Khodadadi, M., Chen, S., Paulose, M., Varghese, O.K., and Mavrokefalos, A.: Thermal-structural relationship of individual titania nanotubes. Nanoscale 7, 19004 (2015).Google Scholar
63. Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V., and Grimes, C.A.: A room-temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).Google Scholar
64. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005).Google Scholar
65. Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., and Grimes, C.A.: Water-photoelectrolysis properties of highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158 (2005).Google Scholar
66. Shankar, K., Basham, J.I., Allam, N.K., Varghese, O.K., Mor, G.K., Feng, X., Paulose, M., Seabold, J.A., Choi, K.S., and Grimes, C.A.: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6327 (2009).Google Scholar
67. Varghese, O.K. and Grimes, C.A.: Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 92, 374 (2008).Google Scholar
68. Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., and Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A: Chem. 178, 8 (2006).Google Scholar
69. Liu, N., Haublein, V., Zhou, X., Venkatesan, U., Hartmann, M., Mackovic, M., Nakajima, T., Spiecker, E., Osvet, A., Frey, L., and Schmuki, P.: ‘Black’ TiO2 nanotubes formed by high energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett. 15, 16179 (2006).Google Scholar
70. Mor, G.K., Varghese, O.K., Paulose, M., and Grimes, C.A.: Transparent highly-ordered TiO2 nanotube-arrays via anodization of titanium thin films. Adv. Funct. Mater. 15, 1291 (2005).Google Scholar
71. Liu, D., Xiao, P., Zhang, Y., Garcia, B.B., Zhang, Q., Guo, Q., Champion, R., and Cao, G.: TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation. J. Phys. Chem. C 112, 11177 (2008).Google Scholar
72. Brammer, K.S., Frandsen, C.J., and Jin, S.: TiO2 nanotubes for bone regeneration. Trends Biotechnol. 30, 315 (2012).Google Scholar
73. Popat, K.C., Leoni, L., Grimes, C.A., and Desai, T.A.: Influence of engineered titania nanotublar surfaces on bone cells. Biomaterials 28, 3188 (2007).Google Scholar
74. Wijeratne, A.B., Wijesundera, D.N., Paulose, M., Ahiabu, I.B., Chu, W.K., Varghese, O.K., and Greis, K.D.: Phosphopeptide separation using radially aligned titania nanotubes on titanium wire. ACS Appl. Mater. Interfaces 7, 11155 (2015).Google Scholar
75. Chevalier, J. and Gremillard, L.: Ceramics for medical applications: a picture for the next 20 years. J. Euro. Ceram. Soc. 29, 1245 (2009).Google Scholar
76. Tsuchiya, H. and Schmuki, P.: Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochem. Commun. 6, 1131 (2004).Google Scholar
77. Lee, W.J. and Smyrl, W.H.: Zirconium oxide nanotubes synthesized via direct electrochemical anodization. Electrochem. Solid-State Lett. 8, B7 (2005).Google Scholar
78. Tsuchiya, H., Macak, J.M., Taveira, L., and Schmuki, P.: Fabrication and characterization of smooth high aspect ration zirconia nanotubes. Chem. Phys. Lett. 410, 188 (2005).CrossRefGoogle Scholar
79. Jiang, W., He, J., Zhong, H., Lu, J., Yuan, S., and Liang, B.: Preparation and photocatalytic performance of ZrO2 nanotubes fabricated with anodization process. Appl. Surf. Sci. 307, 407 (2014).Google Scholar
80. Nico, C., Monteiro, T., and Graca, M.P.F.: Niobium oxides and niobates physical properties: review and prospects. Progr. Mater. Sci. 80, 1 (2016).Google Scholar
81. Sieber, I., Hildebrand, H., Friedrich, A., and Schmuki, P.: Formation of sel-organized niobium porous oxide on niobium. Electrochem. Commun. 7, 97 (2005).Google Scholar
82. Choi, J., Lim, J.H., Lee, S.C., Chang, J.H., Kim, K.J., and Cho, M.A.: Porous niobium oxide films prepared by anodization in HF/H3PO4 . Electrochim. Acta 51, 5502 (2006).Google Scholar
83. Wei, W., Lee, K., Shaw, S., and Schmuki, P.: Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem. Commun. 48, 4244 (2012).Google Scholar
84. Galstyan, V., Comini, E., Faglia, G., and Sberveglieri, G.: Synthesis of self-ordered and well-aligned Nb2O5 nanotubes. CrystEngComm 16, 10273 (2014).CrossRefGoogle Scholar
85. Liu, X., Yuan, R., Liu, Y., Zhu, S., Lin, J., and Chen, X.: Niobium pentoxide nanotube powder for efficient dye-sensitized solar cells. New J. Chem. 40, 62766280 (2016).Google Scholar
86. Tsuchiya, H. and Schmuki, P.: Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem. Commun. 7, 49 (2005).Google Scholar
87. Berger, S., Jakubka, F., and Schmuki, P.: Self-ordered hexagonal nanoporous hafnium oxide and transition to aligned HfO2 nanotube layers. Electrochem. Solid-State Lett. 12, K45 (2009).Google Scholar
88. Qiu, X., Howe, J.Y., Cardoso, M.B., Polat, O., Heller, W.T., and Paranthaman, M.P.: Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism. Nanotechnology 20, 455601 (2009).Google Scholar
89. Qiu, X., Howe, J.Y., Meyer, H.M., Tuncer, E., and Paranthaman, M.P.: Thermal stability of HfO2 nanotube arrays. Appl. Surf. Sci. 257, 4075 (2011).Google Scholar
90. Wu, X., Bai, H., Zhang, J., Chen, F., and Shi, G.: Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B 109, 22836 (2005).CrossRefGoogle ScholarPubMed
91. Xu, L., Yang, Q., Liu, X., Liu, J., and Sun, X.: One-dimensional copper oxide nanotube arrays: biosensors for glucose detection. RSC Adv. 4, 1449 (2014).Google Scholar
92. Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., and Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285 (2006).Google Scholar
93. Rangaraju, R.R., Raja, K.S., Panday, A., and Misra, M.: An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron. Electrochim. Acta 55, 785 (2010).Google Scholar
94. LaTempa, T.J., Feng, X., Paulose, M., and Grimes, C.A.: Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. 113, 16293 (2009).Google Scholar
95. Lee, C.Y., Wang, L., Kado, Y., Killian, M.S., and Schmuki, P.: Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. ChemSusChem 7, 934 (2014).Google Scholar
96. Schrebler, R., Ballesteros, L.A., Gómez, H., Grez, P., Córdova, R., Muñoz, E., Schrebler, R., Ramos-Barrado, J.R., and Dalchiele, E.A.: Electrochemically grown self-organized hematite nanotube arrays for photoelectrochemical water splitting. J. Electrochem. Soc. 161, 903 (2014).Google Scholar
97. Sieber, I., Kannan, B., and Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10 (2005).Google Scholar
98. Allam, N.K., Feng, X.J., and Grimes, C.A.: Self-assembled fabrication of vertically oritented Ta2O5 nanotube arrays and membranes thereof, by one-step tantalum anodization. Chem. Mater. 20, 6477 (2008).Google Scholar
99. El-Sayed, H.A. and Birss, V.I.: Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes. Nano Lett. 9, 1350 (2009).Google Scholar
100. Goncalves, R.V., Migowski, P., Wender, H., Eberhardt, D., Weibel, D.W., Sonaglio, F.C., Zapata, M.J.M., Dupont, J., Feil, A.F., and Teixeira, S.R.: Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J. Phys. Chem. C 116, 14022 (2012).Google Scholar
101. Yang, Y., Albu, S.P., Kim, D., and Schmuki, P.: Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angew. Chem. Int. Ed. Engl. 50, 9071 (2011).Google Scholar
102. Yang, Y., Lee, K., Zobel, M., Mackovic, M., Unruh, T., Spiecker, E., and Schmuki, P.: Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions. Adv. Mater. 24, 1571 (2012).Google Scholar
103. Deb, S.K.: A novel electrophotographic system. Appl. Opt. 8, 192 (1969).CrossRefGoogle ScholarPubMed
104. Wang, Y., Runnerstrom, E.L., and Milliron, D.J.: Switchable materials for smart windows. Annu. Rev. Chem. Biomol. Eng. 7, 283 (2016).Google Scholar
105. Mukherjee, N., Paulose, M., Varghese, O.K., Mor, G.K., and Grimes, C.A.: Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res. 18, 2296 (2003).Google Scholar
106. Lai, C.W., Hamid, S.B.A., and Sreekantan, S.: A novel solar driven photocatalyst: well-aligned anodic WO3 nanotubes. Int. J. Photoenergy 2013, 745301 (2013).Google Scholar
107. Shrestha, N.K., Lee, K., Hahn, R., and Schmuki, P.: Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte. Electrochem. Commun. 34, 9 (2013).Google Scholar
108. Wu, X.F., Lu, G.W., Li, C., and Shi, G.Q.: Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 19, 4936 (2006).Google Scholar
109. Miles, D.O., Cameron, P.J., and Mattia, D.: Hierarchical 3D ZnO nanowire structures via fast anodization of zinc. J. Mater. Chem. A 3, 17569 (2015).Google Scholar
110. Hu, Z., Chen, Q., Li, Z., Yu, Y., and Peng, L.M.: Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. J. Phys. Chem. C 114, 881 (2010).Google Scholar
111. Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., and Grimes, C.A.: Vertically oriented Ti−Fe−O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356 (2007).Google Scholar
112. Agarwal, P., Paramasivam, I., Shrestha, N.K., and Schmuki, P.: MoO3 in self-organized TiO2 Nanotubes for Enhanced Photocatalytic Activity. Chem. Asian J. 5, 66 (2010).Google Scholar
113. Allam, N.K., Deyabab, N.M., and Ghanyb, N.A.: Ternary Ti–Mo–Ni mixed oxide nanotube arrays as photoanode materials for efficient solar hydrogen production. Phys. Chem. Chem. Phys. 15, 12274 (2013).Google Scholar
114. Nah, Y.C., Ghicov, A., Kim, D., Berger, S., and Schmuki, P.: TiO2–WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J. Am. Chem. Soc. 130, 16154 (2008).Google Scholar
115. Mohapatra, S.K., Raja, K.S., Misra, M., Mahajan, V.K., and Ahmadian, M.: Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy. Electrochim. Acta 53, 590 (2007).Google Scholar
116. Yang, Y., Kim, D., Yang, M., and Schmuki, P.: Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 47, 7746 (2011).Google Scholar
117. Kim, J.H., Zhu, K., Yan, Y., Perkins, C.L., and Frank, A.J.: Microstructure and pseudo capacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett. 10, 4099 (2010).Google Scholar
118. Hang, R., Liu, Y., Zhao, L., Gao, A., Bail, L., Huang, X., Zhang, X., Tang, B., and Chu, P.K.: Fabrication of Ni–Ti–O nanotube arrays by anodization of NiTi alloy and their potential applications. Sci. Rep. 4, 7547 (2014).Google Scholar
119. Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K., and Grimes, C.A.: p-Type Cu−Ti−O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906 (2008).Google Scholar
120. Hang, R., Gao, A., Huang, X., Wang, X., Zhang, X., Qin, L., and Tang, B.: Antibacterial activity and cytocompatibility of Cu–Ti–O nanotubes. J. Biomed. Mater. Res. A. 102, 1850 (2014).Google Scholar
121. Roy, P., Das, C., Lee, K., Hahn, R., Ruff, T., Moll, M., and Schmuki, P.: Oxide nanotubes on Ti–Ru Alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. J. Am. Chem. Soc. 133, 5629 (2011).Google Scholar
122. Tsuchiya, H., Akaki, T., Nakata, J., Terada, D., Tsuji, N., Koizumi, Y., Minamino, Y., Schmuki, P., and Fujimoto, S.: Anodic oxide nanotube layers on Ti–Ta alloys: substrate composition, microstructure and self-organization on two-size scales. Corros. Sci. 51, 1528 (2009).Google Scholar
123. Kim, W.G., Choe, H.C., Ko, Y.M., and Brantley, W.A.: Nanotube morphology changes for Ti–Zr alloys as Zr content increases. Thin Solid Films 517, 5033 (2009).Google Scholar
124. Yasuda, K. and Schmuki, P.: Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv. Mater. 19, 1757 (2007).Google Scholar
125. Jang, S.H., Choe, H.C., Ko, Y.M., and Brantley, W.A.: Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films 517, 5038 (2009).Google Scholar
126. Ghicov, A., Aldabergenova, S., Tsuchyia, H., and Schmuki, P.: TiO2–Nb2O5 nanotubes with electrochemically tunable morphologies. Angew. Chem. Int. Ed. Engl. 45, 6993 (2006).Google Scholar
127. Xu, Z., Li, Q., Gao, S., and Shang, J.: Synthesis and characterization of niobium-doped TiO2 nanotube arrays by anodization of Ti–20Nb alloys. J. Mater. Sci. Technol. 28, 865 (2012).Google Scholar
128. Kim, J.U., Jeong, Y.H., and Choe, H.C.: Morphology of hydroxyapatite coated nanotube surface of Ti–35Nb–xHf alloys for implant materials. Thin Solid Films 520, 793 (2011).Google Scholar
129. Saji, V.S., Choe, H.C., and Brantley, W.A.: Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential. J. Mater. Sci. 44, 3975 (2009).Google Scholar
130. Feng, X.J., Macak, J.M., Albu, S.P., and Schmuki, P.: Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomater. 4, 318 (2008).Google Scholar
131. Tsuchiya, H., Macak, J.M., Ghicov, A., and Schmuki, P.: Self-organization of anodic nanotubes on two size scales. Small 2, 888 (2006).Google Scholar
132. Saji, V.S., Choe, H.C., and Brantley, W.A.: An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti–35Nb–5Ta–7Zr alloy for biomedical applications. Acta Biomater. 5, 2303 (2009).Google Scholar
133. Liang, Y.Q., Cui, Z.D., Zhu, S.L., and Yang, X.J.: Characterization of self-organized TiO2 nanotubeson Ti–4Zr–22Nb–2Sn alloys and the application in drug delivery system. J. Mater. Sci: Mater. Med. 22, 461 (2011).Google Scholar
134. Ali, G., Park, Y.J., Kim, H.J., and Cho, S.O.: Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization. Nanoscale Res. Lett. 9, 553 (2014).Google Scholar
135. Macak, J.M., Tsuchiya, H., Taveira, L., Ghicov, A., and Schmuki, P.: Self-organized nanotubular oxide layers on Ti–6Al–7Nb and Ti–6Al–4V formed by anodization in NH4F solutions. J. Biomed. Mater. Res. A 75A, 928 (2005).Google Scholar
136. Zhao, J., Wang, X., Chen, R., and Li, L.: Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater. Lett. 59, 2329 (2005).Google Scholar
137. Xin, Y., Jiang, J., Huo, K., Hu, T., and Chu, P.K.: Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 3, 3228 (2009).Google Scholar
138. Feng, X., LaTempa, T.J., Basham, J.I., Mor, G.K., Varghese, O.K., and Grimes, C.A.: Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 10, 948 (2010).Google Scholar
139. Su, Z., Grigorescu, S., Wang, L., Lee, K. and Schmuki, P.: Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Electrochem. Commun. 50, 15 (2015).Google Scholar