Skip to main content Accessibility help
×
Home

Biosensing using photonic crystal nanolasers

  • Toshihiko Baba (a1)

Abstract

Photonic crystal nanolasers are fabricated and operated simply, and can be applied as disposable sensors for biomedical applications. They are sensitive to the change with environmental index and surface charge. Functionalizing the nanolaser surface with an antibody, the specific binding of target antigen is detected with a detection limit 2–4 orders lower than that achieved by current standard methods, enzyme-linked immuno-sorbent assay. Nanolasers also detect negatively-charged deoxyribonucleic acid from their emission intensity. This technique requires neither labels nor spectroscopy, which simplifies screening procedures. Its applicability for high-speed detection of endotoxin and for label-fee imaging of living cells are also demonstrated.

Copyright

Corresponding author

Address all correspondence to Toshihiko Baba at baba@ynu.ac.jp

References

Hide All
1. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).
2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).
3. Painter, O., Lee, R.K., Scherer, A., Yariv, A., O'Brien, J.D., Dapkus, P.D., and Kim, I.: Two-dimensional photonic band-Gap defect mode laser. Science 284, 1819 (1999).
4. Nozaki, K., Kita, S., and Baba, T.: Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506 (2007).
5. Kita, S., Nozaki, K., Hachuda, S., Watanabe, H., Saito, Y., Otsuka, S., Nakada, T., Arita, Y., and Baba, T.: Photonic crystal point-shift nanolaser with and without nanoslots – design, fabrication, lasing and sensing characteristics. IEEE J. Sel. Top. Quantum Electron. 17, 1632 (2011).
6. Watanabe, K., Hachuda, S., Isono, T., and Baba, T.: Photonic crystal nanolaser sensors with ALD coating; Tech. Dig. CLEO-PR, TuJ2-2 (2013).
7. Narimatsu, M., Kita, S., Abe, H., and Baba, T.: Enhancement of vertical emission in photonic crystal nanolasers. Appl. Phys. Lett. 100, 121117 (2012).
8. Watanabe, T., Abe, H., Nishijima, Y., and Baba, T.: Array integration of thousands of photonic crystal nanolasers. Appl. Phys. Lett. 104, 121108 (2014).
9. Lončar, M., Scherer, A., and Qiu, Y.: Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648 (2003).
10. Kita, S., Nozaki, K., and Baba, T.: Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration. Opt. Express 16, 8174 (2008).
11. Kita, S., Otsuka, S., Hachuda, S., Endo, T., Imai, Y., Nishijima, Y., Misawa, H., and Baba, T.: Super-sensitivity in label-free protein sensing using nanoslot nanolaser. Opt. Express 19, 17683 (2011).
12. Hachuda, S., Otsuka, S., Kita, S., Isono, T., Narimatsu, M., Watanabe, K., Goshima, Y., and Baba, T.: Selective detection of sub-atto-molar streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors. Opt. Express 21, 12815 (2013).
13. Watanabe, K., Kishi, Y., Hachuda, S., Watanabe, T., Sakemoto, M., Nishijima, Y., and Baba, T.: Simultaneous detection of refractive index and surface charges in nanolaser biosensors. Appl. Phys. Lett. 106, 021106 (2015).
14. Lequin, R.M.: Enzyme immunoassay (EIA)/ enzyme- linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415 (2005).
15. Hachuda, S., Watanabe, T., Takahashi, D., and Baba, T.: Ultra-sensitive and selective detection of prostate specific antigen beyond ELISA using photonic crystal nanolaser; Tech. Dig. CLEO, AM1J.3 (2015).
16. Isono, T., Hachuda, S., Watanabe, K., Yamashita, N., Goshima, Y., and Baba, T.: Specific detection of marker protein related with Alzheimer's disease using photonic crystal nanolaser sensor array; Tech. Dig. MRS Annual Meet., K5.09 (2013).
17. Isono, T., Hachuda, S., Watanabe, K., Yamashita, N., Goshima, Y., and Baba, T.: Specific detection of marker protein related with Alzheimer's disease using nanolaser sensor array based on photonic crystal (II); Tech. Dig. JSAP Spring Meet., 19p-E15-10 (2014).
18. Isono, T., Yamashita, N., Obara, M., Araki, T., Nakamura, F., Kamiya, Y., Alkam, T., Nitta, A., Nabeshima, T., Mikoshiba, K., Ohshima, T., and Goshima, Y.: Amyloid-β25–35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neurosci. Res. 77, 180 (2013).
19. Beutler, B. and Rietschel, E.T.: Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169 (2003).
20. Takahashi, D., Hachuda, S., Watanabe, T., Nishijima, Y., and Baba, T.: Detection of endotoxin using a photonic crystal nanolaser. Appl. Phys. Lett. 106, 131112 (2015).
21. Abe, H., Narimatsu, M., Watanabe, T., Furumoto, T., Yokouchi, Y., Nishijima, Y., Kita, S., Tomitaka, A., Ota, S., Takemura, Y., and Baba, T.: Living-cell imaging using a photonic crystal nanolaser array. Opt. Express 23, 17056 (2015).
22. Lau, W.C., Young, K.T., Baev, A., Hu, R., and Prasad, P.N.: Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt. Express 17, 19041 (2009).
23. Besselink, G.A.J., Kooyman, R.P.H., van Os, P.J., Engbers, G.H.M., and Schasfoorta, R.B.M.: Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen Anal. Biochem. 333, 165 (2004).
24. Grubisha, D.S., Lipert, R.J., Park, H.Y., Driskell, J., and Porter, M.D.: Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936 (2003).
25. Lee, S.W., Lee, K.S., Ahn, J., Lee, J.J., Kim, M.G., and Shin, Y.B.: Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5, 897 (2011).
26. Vestergaard, M., Kerman, K., Kim, D.K., Hiep, H.M., and Tamiya, E.: 75.Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta 74, 1038 (2008).
27. Endo, T., Yamamura, S., Kerman, K., and Tamiya, E.: Label-free cell-based assay using localized surface plasmon resonance biosensor. Anal. Chim. Acta 614, 182 (2008).
28. Armani, A.M., Kulkarni, R.P., Fraser, S.E., Flagan, R.C., and Vahala, K.J.: Label-free, single-molecule detection with optical micro-cavities. Science 317, 783 (2007).
29. De Vos, K., Girones, J., Claes, T., De Koninck, Y., Popelka, S., Schacht, E., Baets, R., and Bienstman, P.: Multiplexed antibody detection with an array of silicon-on-insulator microring resonators. IEEE Photon. J. 1, 225 (2009).
30. Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L.H., and Borel, P.I.: Photonic-crystal waveguide biosensor. Opt. Express 15, 3169 (2007).
31. Zlatanovic, S., Mirkarimi, L.W., Sigalas, M.M., Bynum, M.A., Chow, E., Robotti, K.M., Burr, G.W., Esener, S., and Grot, A.: Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens. Act. B: Chem. 141, 13 (2009).
32. Chakravarty, S., Hosseini, A., Xu, X., Zhu, L., Zou, Y., and Chen, R.T.: Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors. Appl. Phys. Lett. 104, 191109 (2014).
33. Yang, D., Kita, S., Liang, F., Wang, C., Tian, H., Ji, Y., Lončar, M., and Quan, Q.: High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett. 105, 063118 (2014).
34. Kim, J.P., Lee, B.Y., Hong, S., and Sim, S.J.: Ultrasensitive carbon nanotube-based biosensors using antibody-binding gragments. Anal. Biochem. 381, 193 (2008).
35. Kim, J.P., Lee, B.Y., Lee, J., Hong, S., and Sim, S.J.: Enhancement of sensitivity and specificity by surface modification of carbon nanotube field effect transistors. Biosens. Bioelectron. 24, 3372 (2009).
36. Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., and Fahmy, T.M.: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138 (2010).
37. Kim, A., Ah, C.S., Yu, H.Y., Yang, J.H., Baek, I.B., Ahn, C.G., Park, C.W., Jun, M.S., and Lee, S.: Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91, 103901 (2007).
38. Lin, T.W., Hsieh, P.J., Lin, C.L., Fang, Y.Y., Yang, J.X., Tsai, C.C., Chiang, P.L., Pan, C.Y., and Chen, Y.T.: Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc. Natl. Acad. Sci. U.S.A. 107, 1047 (2010).
39. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294 (2005).
40. Stern, E., Klemic, J.F., Routenberg, D.A., Wyremebak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519 (2007).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed