Skip to main content Accessibility help
×
Home

Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide

  • Wennie Wang (a1), Hartwin Peelaers (a1), Jimmy-Xuan Shen (a2) and Chris G. Van de Walle (a1)

Abstract

We present a first-principles investigation on the optical absorption of tungsten trioxide, an electrochromic material. Using state-of-the-art techniques, the absorption spectra are calculated for the cubic, monoclinic, and amorphous phases. For both crystalline and disordered structures, doping induces strong absorption in the infrared. Absorption in the visible range increases with the degree of structural distortion; the absorption coefficient in the blue exceeds 103 cm−1 at doping levels above 1020 cm−3 in the monoclinic phase. Increased disorder in disordered structures significantly enhances the visible-range absorption. We identify the microscopic mechanism as optical absorption originating at conduction-band-derived states that are filled by doping.

Copyright

Corresponding author

Address all correspondence to Wennie Wang at wwwennie@engineering.ucsb.edu

References

Hide All
1.Mortimer, R.J.: Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011).
2.Ng, C.J.W.: Synthesis of Tungsten Oxide for Solar Energy Conversion and Water Splitting Applications. Ph.D. Thesis, The University of New South Wales, 2012.
3.Ingham, B., Hendy, S., Chong, S., and Tallon, J.: Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys. Rev. B 72, 075109 (2005).
4.Xue, Y., Zhang, Y. and Zhang, P.: Theory of the color change of NaxWO3 as a function of Na-charge doping. Phys. Rev. B 79, 205113 (2009).
5.Wang, F., Di Valentin, C., and Pacchioni, G.: Semiconductor-to-metal transition in WO3−x: nature of the oxygen vacancy. Phys. Rev. B 84, 073103 (2011).
6.Schirmer, O.F., Wittwer, V., Baur, G., and Brandt, G.: Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc. Solid-State Sci. Technol. 124, 749 (1977).
7.Granqvist, C.G.: Electrochromic tungsten oxide films: review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000).
8.Goldner, R.B., Norton, P., Wong, K., Foley, G., Goldner, E.L., Seward, G., and Chapman, R.: Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films. Appl. Phys. Lett. 47, 536 (1985).
9.Mendelsohn, D.H. and Goldner, R.B.: Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films. J. Electrochem. Soc. 131, 857 (1984).
10.Deneuville, A. and Gerard, P.: Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films. J. Electron. Mater. 7, 559 (1978).
11.Berggren, L., Ederth, J., and Niklasson, G.A.: Electrical conductivity as a function of temperature in amorphous lithium tungsten oxide. Sol. Energy Mater. Sol. Cells 84, 329 (2004).
12.Goldner, R.B., Mendelsohn, D.H., Alexander, J., Henderson, W.R., Fitzpatrick, D., Haas, T.E., Sample, H.H., Rauh, R.D., Parker, M.A., and Rose, T.L.: High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films. Appl. Phys. Lett. 43, 1093 (1983).
13.Berak, J.M. and Sienko, M.J.: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109 (1970).
14.Wang, W., Janotti, A., and Van de Walle, C.G.: Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 4, 6641 (2016).
15.Ping, Y., Rocca, D., and Galli, G.: Optical properties of tungsten trioxide from first-principles calculations. Phys. Rev. B 87, 165203 (2013).
16.Peelaers, H., Kioupakis, E., and Van de Walle, C.G.: Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. Appl. Phys. Lett. 100, 011914 (2012).
17.Peelaers, H. and Van de Walle, C.G.: Sub-band-gap absorption in Ga2O3. Appl. Phys. Lett. 111, 182104 (2017).
18.Peelaers, H., Steiauf, D., Varley, J.B., Janotti, A., and Van de Walle, C.G.: (InxGa1−x)2O3 alloys for transparent electronics. Phys. Rev. B 92, 085206 (2015).
19.Yates, J.R., Wang, X., Vanderbilt, D., and Souza, I.: Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).
20.Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., and Vanderbilt, D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012).
21.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
22.Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).
23.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Erratum: hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).
24.Perdew, J., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
25.de Wijs, G.A. and de Groot, R.A.: Structure and electronic properties of amorphous WO3. Phys. Rev. B 60, 16463 (1999).
26.Wang, W., Janotti, A., and Van de Walle, C.G.: Phase transformations upon doping in WO3. J. Chem. Phys. 146, 214504 (2017).
27.Lynch, D., Rosei, R., Weaver, J., and Olson, C.: The optical properties of some alkali metal tungsten bronzes from 0.1 to 38 eV. J. Solid State Chem. 8, 242 (1973).
28.Wen, R.-T., Granqvist, C.G., and Niklasson, G.A.: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14, 996 (2015).
29.Lee, S.-H., Deshpande, R., Parilla, P.A., Jones, K.M., To, B., Mahan, A.H., and Dillon, A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763 (2006).
30.Bondarenko, N., Eriksson, O., and Skorodumova, N.V.: Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide. Phys. Rev. B 92, 165119 (2015).
Type Description Title
WORD
Supplementary materials

Wang et al. supplementary material 1
Wang et al. supplementary material

 Word (975 KB)
975 KB

Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide

  • Wennie Wang (a1), Hartwin Peelaers (a1), Jimmy-Xuan Shen (a2) and Chris G. Van de Walle (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed