Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T11:04:50.568Z Has data issue: false hasContentIssue false

Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts

Published online by Cambridge University Press:  13 September 2016

Pantcho Stoyanov*
Affiliation:
Fraunhofer-Institute for Mechanics of Materials IWM—MicroTribology Center μTC, Wöhlerstrasse 11, 79108 Freiburg, Germany Karlsruhe Institute of Technology KIT, Institute for Applied Materials IAM, Kaiserstrasse 12, 76131 Karlsruhe, Germany
J. Michael Shockley
Affiliation:
Department of Mining and Materials Engineering, Aluminum Research Centre—REGAL, McGill University, M.H. Wong Building, Montreal, QC H3A 0C5, Canada
Martin Dienwiebel
Affiliation:
Fraunhofer-Institute for Mechanics of Materials IWM—MicroTribology Center μTC, Wöhlerstrasse 11, 79108 Freiburg, Germany Karlsruhe Institute of Technology KIT, Institute for Applied Materials IAM, Kaiserstrasse 12, 76131 Karlsruhe, Germany
Richard R. Chromik
Affiliation:
Department of Mining and Materials Engineering, Aluminum Research Centre—REGAL, McGill University, M.H. Wong Building, Montreal, QC H3A 0C5, Canada
*
Address all correspondence to Pantcho Stoyanov at pantcho.stoyanov@mail.mcgill.ca
Get access

Abstract

In this study, “within the environment” and “within the contact” in situ tribology techniques are combined in order to study the interfacial processes in lubricated metallic (i.e., aluminum-based) sliding conditions. The evolution of the roughness follows the trend of the coefficient of friction closely, with initially low values followed by higher roughness during steady state. Similarly, the transfer film behavior correlates well with the roughness of the worn surfaces and the subsurface microstructure of the worn surfaces. The effect of normal load on the running-in behavior is also studied in terms of differences in the interfacial processes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Godet, M.: The third-body approach: a mechanical view of wear. Wear 100, 437 (1984).CrossRefGoogle Scholar
2. Godet, M.: Third-bodies in tribology. Wear 136, 29 (1990).CrossRefGoogle Scholar
3. Scherge, M., Shakhvorostov, D., and Pöhlmann, K.: Fundamental wear mechanism of metals. Wear 255, 395 (2003).CrossRefGoogle Scholar
4. Blau, P.J.: Fifty years of research on the wear of metals. Tribol. Int. 30, 321 (1997).CrossRefGoogle Scholar
5. Rigney, D. and Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39, 3 (2010).CrossRefGoogle Scholar
6. Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1 (2000).CrossRefGoogle Scholar
7. Rigney, D.A.: Comments on the sliding wear of metals. Tribol. Int. 30, 361 (1997).CrossRefGoogle Scholar
8. Rigney, D.A., Fu, X.Y., Hammerberg, J.E., Holian, B.L., and Falk, M.L.: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977 (2003).CrossRefGoogle Scholar
9. Gohar, R. and Cameron, A.: Optical measurement of oil film thickness under elasto-hydrodynamic lubrication. Nature 200, 458 (1963).CrossRefGoogle Scholar
10. Marx, N., Guegan, J., and Spikes, H.A.: Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 99, 267 (2016).CrossRefGoogle Scholar
11. Dvorak, S.D., Wahl, K.J., and Singer, I.L.: In situ analysis of third body contributions to sliding friction of a Pb–Mo–S coating in dry and humid air. Tribol. Lett. 28, 263 (2007).CrossRefGoogle Scholar
12. Stoyanov, P., Strauss, H., and Chromik, R.R.: Scaling effects between micro- and macrotribology of Ti-MoS2 coatings. Wear 274–275, 149 (2012).CrossRefGoogle Scholar
13. Chromik, R.R., Winfrey, A.L., Luning, J., Nemanich, R.J., and Wahl, K.J.: Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear 265, 477 (2008).CrossRefGoogle Scholar
14. Muratore, C., Bultman, J.E., Aouadi, S.M., and Voevodin, A.A.: In situ Raman spectroscopy for examination of high temperature tribological processes. Wear 270, 140 (2011).CrossRefGoogle Scholar
15. Voevodin, A.A., Muratore, C., and Aouadi, S.M.: Hard coatings with high temperature adaptive lubrication and contact thermal management: review. Surf. Coat. Technol. 257, 247 (2014).CrossRefGoogle Scholar
16. Rowe, K.G., Bennett, A.I., Krick, B.A., and Sawyer, W.G.: In situ thermal measurements of sliding contacts. Tribol. Int. 62, 208 (2013).CrossRefGoogle Scholar
17. Strauss, H.W., Chromik, R.R., and Hassani, S.: In situ tribology of nanocomposite Ti–Si–C–H coatings prepared by PE-CVD. Wear 272, 16 (2011).CrossRefGoogle Scholar
18. Singer, I.L., Dvorak, S.D., Wahl, K.J., and Scharf, T.W.: Third body processes and friction of solid lubricants studied by in situ optical and raman tribometry. In Boundary and Mixed Lubrication Science and Applications, Proceedings of the 28th Leeds-Lyon Symposium on Tribology, Messe Congress Center, Vienna, Austria, Tribology Series, edited by Dowson, D., Priest, M., Dalmaz, G., and Lubrecht, A.A. (Elsevier, 40, 2002), pp. 327336.Google Scholar
19. Wahl, K.J. and Sawyer, W.G.: Observing interfacial sliding processes in solid–solid contacts. MRS Bull. 33, 1159 (2008).CrossRefGoogle Scholar
20. Shockley, J.M., Descartes, S., Irissou, E., Legoux, J.G., and Chromik, R.R.: Third body behavior during dry sliding of cold-sprayed Al-Al2O3 composites: in situ tribometry and microanalysis. Tribol. Lett. 54, 191 (2014).CrossRefGoogle Scholar
21. Shockley, J.M., Strauss, H.W., Chromik, R.R., Brodusch, N., Gauvin, R., Irissou, E., and Legoux, J.-G.: In situ tribometry of cold-sprayed Al–Al2O3 composite coatings. Surf. Coat. Technol. 215, 350 (2013).CrossRefGoogle Scholar
22. Sriraman, K.R., Strauss, H.W., Brahimi, S., Chromik, R.R., Szpunar, J.A., Osborne, J.H., and Yue, S.: Tribological behavior of electrodeposited Zn, Zn–Ni, Cd and Cd–Ti coatings on low carbon steel substrates. Tribol. Int. 56, 107 (2012).CrossRefGoogle Scholar
23. Keith, J.H.: Design of a pin-on-disk tribometer with in situ optical profilometry. PhD diss., University of Florida, 2010.Google Scholar
24. Korres, S. and Dienwiebel, M.: Design and construction of a novel tribometer with online topography and wear measurement. Rev. Sci. Instrum. 81, 063904 (2010).CrossRefGoogle ScholarPubMed
25. Sawyer, W.G. and Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145 (2008).CrossRefGoogle Scholar
26. Descartes, S. and Berthier, Y.: Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear 252, 546 (2002).CrossRefGoogle Scholar
27. Chromik, R.R., Baker, C.C., Voevodin, A.A. and Wahl, K.J.: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262, 1239 (2007).CrossRefGoogle Scholar
28. Wahl, K.J., Dunn, D.N., and Singer, I.L.: Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230, 175 (1999).CrossRefGoogle Scholar
29. Scharf, T.W. and Singer, I.L.: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45, 363 (2002).CrossRefGoogle Scholar
30. Chromik, R.R., Strauss, H.W., and Scharf, T.W.: Materials phenomena revealed by in situ tribometry. JOM 64, 35 (2012).CrossRefGoogle Scholar
31. Shockley, J.M., Descartes, S., Vo, P., Irissou, E., and Chromik, R.R.: The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al–Al2O3 composites. Surf. Coat. Technol. 270, 324 (2015).CrossRefGoogle Scholar
32. Stoyanov, P., Romero, P.A., Järvi, T.T., Pastewka, L., Scherge, M., Stemmer, P., Fischer, A., Dienwiebel, M., and Moseler, M.: Experimental and numerical atomistic investigation of the third body formation process in dry tungsten/tungsten-carbide tribo couples. Tribol. Lett. 50, 67 (2013).CrossRefGoogle Scholar
33. Stoyanov, P., Merz, R., Romero, P.A., Wählisch, F.C., Abad, O.T., Gralla, R., Stemmer, P., Kopnarski, M., Moseler, M., Bennewitz, R., and Dienwiebel, M.: Surface softening in metal–ceramic sliding contacts: an experimental and numerical investigation. ACS Nano 9, 1478 (2015).CrossRefGoogle ScholarPubMed
34. Buckley, D.H.: Ceramic microstructure and adhesion. J. Vac. Sci. Technol. A 3, 762 (1985).CrossRefGoogle Scholar
35. Kuo, S.M. and Rigney, D.A.: Sliding behavior of aluminum. Mater. Sci. Eng. A 157, 131 (1992).CrossRefGoogle Scholar
36. Stoyanov, P., Linsler, D., Schlarb, T., Scherge, M., and Schwaiger, R.: Dependence of tribofilm characteristics on the running-in behavior of aluminum–silicon alloys. J. Mater. Sci. 50, 5524 (2015).CrossRefGoogle Scholar
37. Fischer, A.: Subsurface microstructural alterations during sliding wear of biomedical metals. Modelling and experimental results. Comput. Mater. Sci. 46, 586 (2009).CrossRefGoogle Scholar
38. Beckmann, N., Romero, P.A., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., and Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014).CrossRefGoogle Scholar
39. Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 197, 53 (1983).CrossRefGoogle Scholar
40. Rupert, T.J. and Schuh, C.A.: Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58, 4137 (2010).CrossRefGoogle Scholar