Skip to main content Accessibility help
×
Home

Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts

  • Pantcho Stoyanov (a1) (a2), J. Michael Shockley (a3), Martin Dienwiebel (a1) (a2) and Richard R. Chromik (a3)

Abstract

In this study, “within the environment” and “within the contact” in situ tribology techniques are combined in order to study the interfacial processes in lubricated metallic (i.e., aluminum-based) sliding conditions. The evolution of the roughness follows the trend of the coefficient of friction closely, with initially low values followed by higher roughness during steady state. Similarly, the transfer film behavior correlates well with the roughness of the worn surfaces and the subsurface microstructure of the worn surfaces. The effect of normal load on the running-in behavior is also studied in terms of differences in the interfacial processes.

Copyright

Corresponding author

Address all correspondence to Pantcho Stoyanov at pantcho.stoyanov@mail.mcgill.ca

References

Hide All
1. Godet, M.: The third-body approach: a mechanical view of wear. Wear 100, 437 (1984).
2. Godet, M.: Third-bodies in tribology. Wear 136, 29 (1990).
3. Scherge, M., Shakhvorostov, D., and Pöhlmann, K.: Fundamental wear mechanism of metals. Wear 255, 395 (2003).
4. Blau, P.J.: Fifty years of research on the wear of metals. Tribol. Int. 30, 321 (1997).
5. Rigney, D. and Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39, 3 (2010).
6. Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1 (2000).
7. Rigney, D.A.: Comments on the sliding wear of metals. Tribol. Int. 30, 361 (1997).
8. Rigney, D.A., Fu, X.Y., Hammerberg, J.E., Holian, B.L., and Falk, M.L.: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977 (2003).
9. Gohar, R. and Cameron, A.: Optical measurement of oil film thickness under elasto-hydrodynamic lubrication. Nature 200, 458 (1963).
10. Marx, N., Guegan, J., and Spikes, H.A.: Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 99, 267 (2016).
11. Dvorak, S.D., Wahl, K.J., and Singer, I.L.: In situ analysis of third body contributions to sliding friction of a Pb–Mo–S coating in dry and humid air. Tribol. Lett. 28, 263 (2007).
12. Stoyanov, P., Strauss, H., and Chromik, R.R.: Scaling effects between micro- and macrotribology of Ti-MoS2 coatings. Wear 274–275, 149 (2012).
13. Chromik, R.R., Winfrey, A.L., Luning, J., Nemanich, R.J., and Wahl, K.J.: Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear 265, 477 (2008).
14. Muratore, C., Bultman, J.E., Aouadi, S.M., and Voevodin, A.A.: In situ Raman spectroscopy for examination of high temperature tribological processes. Wear 270, 140 (2011).
15. Voevodin, A.A., Muratore, C., and Aouadi, S.M.: Hard coatings with high temperature adaptive lubrication and contact thermal management: review. Surf. Coat. Technol. 257, 247 (2014).
16. Rowe, K.G., Bennett, A.I., Krick, B.A., and Sawyer, W.G.: In situ thermal measurements of sliding contacts. Tribol. Int. 62, 208 (2013).
17. Strauss, H.W., Chromik, R.R., and Hassani, S.: In situ tribology of nanocomposite Ti–Si–C–H coatings prepared by PE-CVD. Wear 272, 16 (2011).
18. Singer, I.L., Dvorak, S.D., Wahl, K.J., and Scharf, T.W.: Third body processes and friction of solid lubricants studied by in situ optical and raman tribometry. In Boundary and Mixed Lubrication Science and Applications, Proceedings of the 28th Leeds-Lyon Symposium on Tribology, Messe Congress Center, Vienna, Austria, Tribology Series, edited by Dowson, D., Priest, M., Dalmaz, G., and Lubrecht, A.A. (Elsevier, 40, 2002), pp. 327336.
19. Wahl, K.J. and Sawyer, W.G.: Observing interfacial sliding processes in solid–solid contacts. MRS Bull. 33, 1159 (2008).
20. Shockley, J.M., Descartes, S., Irissou, E., Legoux, J.G., and Chromik, R.R.: Third body behavior during dry sliding of cold-sprayed Al-Al2O3 composites: in situ tribometry and microanalysis. Tribol. Lett. 54, 191 (2014).
21. Shockley, J.M., Strauss, H.W., Chromik, R.R., Brodusch, N., Gauvin, R., Irissou, E., and Legoux, J.-G.: In situ tribometry of cold-sprayed Al–Al2O3 composite coatings. Surf. Coat. Technol. 215, 350 (2013).
22. Sriraman, K.R., Strauss, H.W., Brahimi, S., Chromik, R.R., Szpunar, J.A., Osborne, J.H., and Yue, S.: Tribological behavior of electrodeposited Zn, Zn–Ni, Cd and Cd–Ti coatings on low carbon steel substrates. Tribol. Int. 56, 107 (2012).
23. Keith, J.H.: Design of a pin-on-disk tribometer with in situ optical profilometry. PhD diss., University of Florida, 2010.
24. Korres, S. and Dienwiebel, M.: Design and construction of a novel tribometer with online topography and wear measurement. Rev. Sci. Instrum. 81, 063904 (2010).
25. Sawyer, W.G. and Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145 (2008).
26. Descartes, S. and Berthier, Y.: Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear 252, 546 (2002).
27. Chromik, R.R., Baker, C.C., Voevodin, A.A. and Wahl, K.J.: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262, 1239 (2007).
28. Wahl, K.J., Dunn, D.N., and Singer, I.L.: Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230, 175 (1999).
29. Scharf, T.W. and Singer, I.L.: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45, 363 (2002).
30. Chromik, R.R., Strauss, H.W., and Scharf, T.W.: Materials phenomena revealed by in situ tribometry. JOM 64, 35 (2012).
31. Shockley, J.M., Descartes, S., Vo, P., Irissou, E., and Chromik, R.R.: The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al–Al2O3 composites. Surf. Coat. Technol. 270, 324 (2015).
32. Stoyanov, P., Romero, P.A., Järvi, T.T., Pastewka, L., Scherge, M., Stemmer, P., Fischer, A., Dienwiebel, M., and Moseler, M.: Experimental and numerical atomistic investigation of the third body formation process in dry tungsten/tungsten-carbide tribo couples. Tribol. Lett. 50, 67 (2013).
33. Stoyanov, P., Merz, R., Romero, P.A., Wählisch, F.C., Abad, O.T., Gralla, R., Stemmer, P., Kopnarski, M., Moseler, M., Bennewitz, R., and Dienwiebel, M.: Surface softening in metal–ceramic sliding contacts: an experimental and numerical investigation. ACS Nano 9, 1478 (2015).
34. Buckley, D.H.: Ceramic microstructure and adhesion. J. Vac. Sci. Technol. A 3, 762 (1985).
35. Kuo, S.M. and Rigney, D.A.: Sliding behavior of aluminum. Mater. Sci. Eng. A 157, 131 (1992).
36. Stoyanov, P., Linsler, D., Schlarb, T., Scherge, M., and Schwaiger, R.: Dependence of tribofilm characteristics on the running-in behavior of aluminum–silicon alloys. J. Mater. Sci. 50, 5524 (2015).
37. Fischer, A.: Subsurface microstructural alterations during sliding wear of biomedical metals. Modelling and experimental results. Comput. Mater. Sci. 46, 586 (2009).
38. Beckmann, N., Romero, P.A., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., and Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014).
39. Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 197, 53 (1983).
40. Rupert, T.J. and Schuh, C.A.: Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58, 4137 (2010).

Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts

  • Pantcho Stoyanov (a1) (a2), J. Michael Shockley (a3), Martin Dienwiebel (a1) (a2) and Richard R. Chromik (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed