Skip to main content

Depolymerizable polymers: preparation, applications, and future outlook

  • Joshua A. Kaitz (a1), Olivia P. Lee (a1) and Jeffrey S. Moore (a1)

Depolymerizable polymers are stimuli-responsive materials triggered to depolymerize rapidly and completely into their constituent monomers on command. Applications include triggerable vehicles for controlled release, restructurable materials, disappearing or sacrificial composites, and lithographic resists. Owing to their widespread utility, significant efforts have aimed to prepare and explore depolymerizable polymers and their corresponding triggers. This “Prospective” highlights advances since their discovery over a half-century ago, discusses methods in their preparation, and presents recent developments in triggered depolymerization. It also surveys applications that harness these polymers’ unique properties, while offering insights into research directions that may contribute to progress in this dynamic field.

Corresponding author
Address all correspondence to Jeffrey S. Moore
Hide All
1.Peterson, G.I., Larsen, M.B., and Boydston, A.J.: Controlled depolymerization: stimuli-responsive self-immolative polymers. Macromolecules 45, 7317 (2012).
2.Phillips, S.T. and DiLauro, A.M.: Continuous head-to-tail depolymerization: an emerging concept for imparting amplified responses to stimuli-responsive materials. ACS Macro Lett. 3, 298 (2014).
3.Phillips, S.T., Robbins, J.S., DiLauro, A.M., and Olah, M.G.: Amplified responses in materials using linear polymers that depolymerize from end-to-end when exposed to specific stimuli. J. Appl. Polym. Sci. 131, 40992 (2014).
4.Gnaim, S. and Shabat, D.: Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Acc. Chem. Res. 47, 2970 (2014).
5.Avital-Scmilovici, M. and Shabat, D.: Self-immolative dendimers: a distinctive approach to molecular amplification. Soft Matter 6, 1073 (2010).
6.Wong, A.D., DeWit, M.A., and Gillies, E.R.: Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Adv. Drug Deliv. Rev. 64, 1031 (2012).
7.Jenkins, A.D., Kratochvíl, P., Stepto, R.F.T., and Suter, U.W.: Glossary of basic terms in polymer science. Pure Appl. Chem. 68, 2287 (1996).
8.David, C.: Thermal degradation of polymers, in Comprehensive Chemical Kinetics Volume 14: Degradation of Polymers, edited by Bamford, C.H. and Tipper, C.F.H. (Elvesier Scientific Publishing Company, New York, 1975), pp. 1173.
9.Snow, R.D. and Frey, F.E.: The reaction of sulfur dioxide with olefins: the ceiling temperature phenomenon. J. Am. Chem. Soc. 65, 2417 (1943).
10.Dainton, F.S. and Ivin, K.J.: Reversibility of the propagation reaction in polymerization processes and its manifestation in the phenomenon of a ‘ceiling temperature’. Nature 162, 705 (1948).
11.Dainton, F.S. and Ivin, K.J.: The kinetics of polysulphone formation. II. The formation of 1-butene polysulphone in the region of the ceiling temperature. Proc. R. Soc. Lond. A 212, 207 (1952).
12.Cook, R.E., Dainton, F.S., and Ivin, K.J.: Effect of olefin structure on the ceiling temperature for olefin polysulfone formation. J. Polym. Sci. 26, 351 (1957).
13.Dainton, F.S. and Ivin, K.J.: Some thermodynamic and kinetic aspects of addition polymerisation. Q. Rev. Chem. Soc. 12, 61 (1958).
14.Ivin, K.J.: Thermodynamics of addition polymerization processes. Angew. Chem. Int. Ed. 12, 487 (1973).
15.Ivin, K.J.: Thermodynamics of addition polymerization. J. Polym. Sci. A, Polym. Chem. 38, 2137 (2000).
16.Sawada, H.: Thermodynamics of polymerization. I. J. Macromol. Sci. C, Polym. Rev. 3, 313 (1969).
17.Sawada, H.: Thermodynamics of polymerization. IV. Thermodynamics of equilibrium polymerization. J. Macromol. Sci. C, Polym. Rev. 8, 235 (1972).
18.Vogl, O.: Addition polymers of aldehydes. J. Polym. Sci. A, Polym. Chem. 38, 2293 (2000).
19.Kostler, S.: Polyaldehydes: homopolymers, block copolymers and promising applications. Polym. Int. 61, 1221 (2012).
20.Kubisa, P., Neeld, K., Starr, J., and Vogl, O.: Polymerization of higher aldehydes. Polymer 21, 1433 (1980).
21.Vogl, O.: Kinetics of aldehyde polymerization. J. Macromol. Sci. C, Polym. Rev. 12, 109 (1975).
22.Odian, G.: Principles of Polymerization, 4th ed. (Wiley-Interscience, New York, 2004), pp. 204206.
23.Brown, N.: Polymerization of formaldehyde. J. Macromol. Sci. A, Pure Appl. Chem. 1, 209 (1967).
24.Masamoto, J.: Modern polyacetals. Prog. Polym. Sci. 18, 1 (1993).
25.Schweitzer, C.E., MacDonald, R.N., and Punderson, J.O.: thermally stable high molecular weight polyoxymethylenes. J. Appl. Polym. Sci. 1, 158 (1959).
26.Koch, T.A. and Lindvig, P.E.: Molecular structure of high molecular weight acetal resins. J. Appl. Polym. Sci. 1, 164 (1959).
27.Hammer, C.F., Koch, T.A., and Whitney, J.F.: Fine structure of acetal resins and its effect on mechanical properties. J. Appl. Polym. Sci. 1, 169 (1959).
28.Linton, W.H. and Goodman, H.H.: Physical properties of high molecular weight acetal resins. J. Appl. Polym. Sci. 1, 179, (1959).
29.Alsup, R.G., Punderson, J.O., and Leverett, G.F.: the effect of solvents on high molecular weight, stable acetal resins. J. Appl. Polym. Sci. 1, 185 (1959).
30.Vogl, O.: The polymerization of aldehydes. J. Polym. Sci. 46, 261 (1960).
31.Vogl, O.: Polymerization of higher aldehydes. III. Elastomeric polyacetaldehyde. J. Polym. Sci. A, Polym. Chem. 2, 4591 (1964).
32.Vogl, O.: Polymerization of higher aldehydes. IV. Crystalline isotactic polyaldehydes: anionic and cationic polymerization. J. Polym. Sci. A, Polym. Chem. 2, 4607 (1964).
33.Vogl, O.: Polymerization of higher aldehydes. V. End-capped crystalline isotactic polyaldehydes: characterization and properties. J. Polym. Sci. A, Polym. Chem. 2, 4621 (1964).
34.Vogl, O. and Bryant, W.M.D.: Polymerization of higher aldehydes. VI. Mechanism of aldehyde polymerization. J. Polym. Sci. A, Polym. Chem. 2, 4633 (1964).
35.Brame, E.G. Jr., Sudol, R.S., and Vogl, O.: Polymerization of higher aldehydes. VII. Tacticity of elastomeric polyacetaldehyde. J. Polym. Sci. A, Polym. Chem. 2, 5337 (1964).
36.Aso, C., Tagami, S., and Kunitake, T.: Polymerization of aromatic aldehydes. II. Cationic cyclopolymerization of phthalaldehyde. J. Polym. Sci. A, Polym. Chem. 7, 497 (1969).
37.Aso, C. and Tagami, S.: Polymerization of aromatic aldehydes. III. The cyclopolymerization of phthalaldehyde and the structure of the polymer. Macromolecules 2, 414 (1969).
38.Aso, C.: Cyclopolymerization of bifunctional monomers. Pure Appl. Chem. 23, 287 (1970).
39.Tagami, S., Kagiyama, T., and Aso, C.: Polymerization of aromatic aldehydes. VII. Cyclopolymerization of o-formylphenylacetaldehyde and formation of a cyclic trimer. Polym. J. 2, 101 (1971).
40.Kaitz, J.A., Diensendruck, C.E., and Moore, J.S.: End group characterization of poly(phthalaldehyde): surprising discovery of a reversible, cationic macrocyclization mechanism. J. Am. Chem. Soc. 135, 12755 (2013).
41.Kaitz, J.A., Diensendruck, C.E., and Moore, J.S.: Dynamic covalent macrocyclic poly(phthalaldehyde)s: scrambling cyclic homopolymer mixtures produces multi-block and random cyclic copolymers. Macromolecules 46, 8121 (2013).
42.Kaitz, J.A., Diesendruck, C.E., and Moore, J.S.: Divergent macrocyclization mechanisms in the cationic initiated polymerization of ethyl glyoxylate. Macromolecules 47, 3603 (2014).
43.Sagi, A., Weinstain, R., Karton, N., and Shabat, D.: Self-immolative polymers. J. Am. Chem. Soc. 130, 5434 (2008).
44.Weinstain, R., Sagi, A., Karton, N., and Shabat, D.: Self-immolative comb-polymers: multiple-release of side-reporters by a single stimulus event. Chem. Eur. J. 14, 6857 (2008).
45.Weinstain, R., Baran, P.S., and Shabat, D.: Activity-linked labeling of enzymes by self-immolative polymers. Bioconjugate Chem. 20, 1783 (2009).
46.Esser-Kahn, A.P., Sottos, N.R., White, S.R., and Moore, J.S.: Programmable microcapsules from self-immolative polymers. J. Am. Chem. Soc. 132, 10266 (2010). Gracia Lux, C., McFearin, C.L., Joshi-Barr, S., Sankaranarayanan, J., Fomina, N., and Almutairi, A.: Single UV or near IR triggering event leads to polymer degradation into small molecules. ACS Macro Lett. 1, 922 (2012).
48.Peterson, G.I., Church, D.C., Yakelis, N.A., and Boydston, A.J.: 1,2-Oxazine linker as a thermal trigger for self-immolative polymers. Polymer 55, 5980 (2014).
49.Okada, H., Tanaka, K., Ohashi, W., and Chujo, Y.: Photo-triggered molecular release based on auto-degradable polymer-containing organic-inorganic hybrids. Bioorg. Med. Chem. 22, 3435 (2014).
50.DeWit, M.A., Beaton, A., and Gillies, E.R.: A reduction sensitive cascade biodegradable linear polymer. J. Polym. Sci. A, Polym. Chem. 48, 3977 (2010).
51.DeWit, M.A. and Gillies, E.R.: A cascade biodegradable polymer based on alternating cyclization and elimination reactions. J. Am. Chem. Soc. 131, 18327 (2009).
52.Chen, E.K.Y., McBride, R.A., and Gillies, E.R.: Self-immolative polymers containing rapidly cyclizing spacers: toward rapid depolymerization rates. Macromolecules 45, 7364 (2012).
53.McBride, R.A. and Gillies, E.R.: Kinetics of self-immolative degradation in a linear polymeric system: demonstrating the effect of chain length. Macromolecules 46, 5157 (2013).
54.Wong, A.D., Gungor, T.M., and Gillies, E.R.: Multi-responsive azobenzene end-cap for self-immolative polymers. ACS Macro Lett. 3, 1191 (2014).
55.DeWit, M.A., Nazemi, A., Karamdoust, S., Beaton, A., and Gillies, E.R.: Design, synthesis and assembly of self-immolative linear block copolymers. ACS Symp. Ser. 1066, 9 (2011).
56.Robbins, J.S., Schmid, K.M., and Phillips, S.T.: Effects of electronics, aromaticity, and solvent polarity on the rate of azaquinone–methide-mediated depolymerization of aromatic carbamate oligomers. J. Org. Chem. 78, 3159 (2013).
57.Lewis, G.G., Robbins, J.S., and Phillips, S.T.: Phase-switching depolymerizable poly(carbamate) oligomers for signal amplification in quantitative time-based assays. Macromolecules 46, 5177 (2013).
58.Liu, G., Wang, X., Hu, J., Zhang, G., and Liu, S.: Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 136, 7492 (2014).
59.Erez, R., Shabat, D.: The azaquinone-methide elimination: comparison study of 1,6- and 1,4-eliminations under physiological conditions. Org. Biomol. Chem. 6, 2669 (2008).
60.Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O., and Almutairi, A.: UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132, 9540 (2010).
61.Fomina, N., McFearin, C.L., Sermsakdi, M., Morachis, J.M., and Almutairi, A.: Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44, 8590 (2011). Gracia Lux, C., Joshi-Barr, S., Nguyen, T., Mahmoud, E., Schopf, E., Fomina, N., and Almutairi, A.: Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134, 15758 (2012). Gracia Lux, C. and Almutairi, A.: Intramolecular cyclization for stimuli-controlled depolymerization of polycaprolactone particles leading to disassembly and payload release. ACS Macro Lett. 2, 432 (2013).
64.Olejniczak, J., Sankaranarayanan, J., Viger, M.L., and Almutairi, A.: Higher efficiency two-photon degradable copolymer for remote controlled release. ACS Macro Lett. 2, 683 (2013).
65.Zhang, Y., Ma, L., Deng, X., and Cheng, J.: Trigger-responsive chain-shattering polymers. Polym. Chem. 4, 224 (2013).
66.Zhang, Y., Yin, Q., Yin, L., Ma, L., Tang, L., and Cheng, J.: Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew. Chem. Int. Ed. 52, 6435 (2013).
67.Seo, W. and Phillips, S.T.: Patterned plastics that change physical structure in response to applied chemical signals. J. Am. Chem. Soc. 132, 9234 (2010).
68.DiLauro, A.M., Robbins, J.S., and Phillips, S.T.: Reproducible and scalable synthesis of end-cap-functionalized depolymerizable poly(phthalaldehydes). Macromolecules 46, 2963 (2013).
69.Winter, J.D., Dove, A.P., Knoll, A., Gerbaux, P., Dubois, P., and Coulembier, O.: Control over molar mass, dispersity, end-groups and kinetics in cyclopolymerization of ortho-phthalaldehyde: adapted choice of phosphazene organocatalyst. Polym. Chem. 5, 706 (2014).
70.Kaitz, J.A. and Moore, J.S.: Functional phthalaldehyde polymers by copolymerization with substituted benzaldehydes. Macromolecules 46, 608 (2013).
71.Kaitz, J.A., Possanza, C.M., Song, Y., Diesendruck, C.E., Spiering, A.J.H., Meijer, E.W., and Moore, J.S.: Depolymerizable, adaptive supramolecular polymer nanoparticles and networks. Polym. Chem. 5, 3788 (2014).
72.Tsuda, M., Hata, M., Nishida, R., and Oikawa, S.: Acid-catalyzed degradation mechanism of poly(phthalaldehyde): unzipping reaction of chemical amplification resist. J. Polym. Sci. A, Polym. Chem. 35, 77 (1997).
73.Frederick, D.S., Cogan, H.D., and Marvel, C.S.: The reaction between sulfur dioxide and olefins. Cyclohexene. J. Am. Chem. Soc. 56, 1815 (1934).
74.Hunt, M. and Marvel, C.S.: The reaction between sulfur dioxide and olefins. II. Propylene. J. Am. Chem. Soc. 57, 1691 (1935).
75.Ryden, L.L. and Marvel, C.S.: The reaction between sulfur dioxide and olefins. III. Higher olefins and some limitations of the reaction. J. Am. Chem. Soc. 57, 2311 (1935).
76.Shinoda, T., Nishiwaki, T., and Inoue, H.: Decomposition of poly(4-hydroxystyrene sulfone) in alkaline aqueous solutions. J. Polym. Sci. A, Polym. Chem. 38, 2760 (2000).
77.Lobez, J.M. and Swager, T.M.: Disassembly of elastomers: poly(olefin sulfone)−silicones with switchable mechanical properties. Macromolecules 43, 10422 (2010).
78.Bowmer, T.N. and O'Donnell, J.H.: Radiation degradation of poly(olefin Sulfone)s: a volatile product study. J. Macromol. Sci. A, Pure Appl. Chem. 17, 243 (1982).
79.Brown, J.R. and O'Donnell, J.H.: The degradation of poly(butene-1 sulfone) during γ irradiation. Macromolecules 3, 265 (1970).
80.Brown, J.R. and O'Donnell, J.H.: γ Radiolysis of poly(butene-1 sulfone) and poly(hexane-1 sulfone). Macromolecules 5, 109 (1972).
81.Ayscough, P.B., Ivin, K.J., and O'Donnell, J.H.: Electron spin resonance spectra of γ-irradiated sulphones and polysulphones. J. Chem. Soc. Faraday Trans. 61, 1110 (1965).
82.Bowden, M.J. and Thompson, L.F.: Electron irradiation of poly(olefin sulfones). Application to electron beam resists. J. Appl. Polym. Sci. 17, 3211 (1973).
83.Yaguchi, H. and Sasaki, T.: Photoinduced depolymerization of poly(olefin sulfone)s possessing photobase generating groups in the side chain. Macromolecules 40, 9332 (2007).
84.Sasaki, T. and Yaguchi, H.: Photoinduced unzipping depolymerization of poly(olefin sulfone)s possessing photobase generator and base amplifier. J. Polym. Sci. A, Polym. Chem. 47, 602 (2009).
85.Thompson, L.F. and Bowden, M.J.: A new family of positive electron beam resists—poly(Olefin Sulfones). J. Electrochem. Soc. 120, 1722 (1973).
86.Gipstein, E., Moreau, W., Chiu, G., and Need, O.U.: The synthesis and evaluation of cyclic olefin sulfone copolymers and terpolymers as electron beam resists. J. Appl. Polym. Sci. 21, 677 (1977).
87.Bowden, M.J. and Chandross, E.A.: Poly(Vinyl Arene Sulfones) as novel positive photoresists. J. Electrochem. Soc. 122, 1370 (1975).
88.Willson, C.G.: Organic resist materials—theory and chemistry, in Introduction to Microlithography—Theory, Materials, and Processing, edited by Thompson, L.F., Wilson, C.G. and Bowden, M.J. (American Chemical Society, Washington, D.C., 1983), pp. 126.
89.Willson, C.G., Taylor, G.N., and Wolf, T.M.: Oxygen plasma removal of thin polymer films. Polym. Eng. Sci. 20, 1087 (1980).
90.Ito, H. and Willson, C.G.: Chemical amplification in the design of dry developing resist materials. Polym. Eng. Sci. 23, 1012 (1983).
91.Willson, C.G., Ito, H., Fréchet, J.M.J., Tessier, T.G., and Houlihan, F.M.: Approaches to the design of radiation-sensitive polymeric imaging systems with improved sensitivity and resolution. J. Electrochem. Soc. 133, 181 (1986).
92.Ito, H. and Schwalm, R.: Thermally developable, positive resist systems with high sensitivity. J. Electrochem. Soc. 136, 241 (1989).
93.Ito, H., Ueda, M. and Renaldo, A.F.: Thermally developable, positive tone, oxygen RIE barrier resist for bilayer lithography. J. Electrochem. Soc. 136, 245 (1989).
94.Coulembier, O., Knoll, A., Pires, D., Gotsmann, B., Duerig, U., Frommer, J., Miller, R.D., Dubois, P., and Hedrick, J.L.: Probe-based nanolithography: self-amplified depolymerization media for dry lithography. Macromolecules 43, 572 (2010).
95.Knoll, A.W., Pires, D., Coulembier, O., Dubois, P., Hedrick, J.L., Frommer, J., and Duerig, U.: Probe-based 3-D nanolithography using self-amplified depolymerization polymers. Adv. Mater. 22, 3361 (2010).
96.Lobez, J.M. and Swager, T.M.: radiation detection: resistivity responses in functional poly(Olefin Sulfone)/Carbon nanotube composites. Angew. Chem. Int. Ed. 49, 95 (2010).
97.Grassie, N. and Macfarlane, I.G.: The thermal degradation of polysiloxanes—I. Poly(dimethylsiloxane). Eur. Polym. J. 14, 875 (1978).
98.Patnode, W. and Wilcock, D.F.: Methylpolysiloxanes. J. Am. Chem. Soc. 68, 358 (1946).
99.Cademartiri, L. and Ozin, G.A.: Concepts of Nanochemistry (Wiley-VCH, Weinheim, 2009), pp. 113139.
100.Blencowe, C.A., Russell, A.T., Greco, F., Hayes, W., and Thornthwaite, D.W.: Self-immolative linkers in polymeric delivery systems. Polym. Chem. 2, 773 (2011).
101.Esser-Kahn, A.P., Odom, S.A., Sottos, N.R., White, S.R., and Moore, J.S.: triggered release from polymer capsules. Macromolecules 44, 5539 (2011).
102.DiLauro, A.M., Abbaspourrad, A., Weitz, D.A., and Phillips, S.T.: Stimuli-responsive core–shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) membrane. Macromolecules 46, 3309 (2013).
103.Fan, B., Trant, J.F., Wong, A.D., and Gillies, E.R.: Polyglyoxylates: a versatile class of triggerable self-immolative polymers from readily accessible monomers. J. Am. Chem. Soc. 136, 10116 (2014).
104.Diesendruck, C.E., Peterson, G.I., Kulik, H.J., Kaitz, J.A., Mar, B.D., May, P.A., White, S.R., Martinez, T.J., Boydston, A.J., and Moore, J.S.: Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623 (2014).
105.Zhang, H., Yeung, K., Robbins, J.S., Pavlick, R.A., Wu, M., Liu, R., Sen, A., and Phillips, S.T.: Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem. Int. Ed. 51, 2400 (2012).
106.DiLauro, A.M., Zhang, H., Baker, M.S., Wong, F., Sen, A., and Phillips, S.T.: Accessibility of responsive end-caps in films composed of stimuli-responsive, depolymerizable poly(phthalaldehydes). Macromolecules 46, 7257 (2013).
107.Lopez Hernandez, H., Kang, S.-K., Lee, O.P., Hwang, S.-W., Kaitz, J.A., Inci, B., Park, C.W., Chung, S., Sottos, N.R., Moore, J.S., Rogers, J.A., and White, S.R.: Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 26, 7637 (2014).
108.Holzner, F., Kuemin, C., Paul, P., Hedrick, J.L., Wolf, H., Spencer, N.D., Duergi, U., and Knoll, A.W.: Directed placement of gold nanorods using a removable template for guided assembly. Nano Lett. 11, 3957 (2011).
109.Vogt, A.P., Winter, J.D., Krolla-Sidenstein, P., Geckle, U., Coulembier, O., and Barner-Kowollik, C.: Polyphthalaldehyde-block-polystyrene as a nanochannel template. J. Mater. Chem. B 2, 3578 (2014).
110.Olah, M.G., Robbins, J.S., Baker, M.S., and Phillips, S.T.: End-capped poly(benzyl ethers): acid and base stable polymers that depolymerize rapidly from head-to-tail in response to specific applied signals. Macromolecules 46, 5924 (2013).
111.Vairon, J.P., Muller, E., and Bunel, C.: The ionic polymerizations of methyl glyoxylate. Macromol. Symp. 85, 307 (1994).
112.Brachais, C.H., Huguet, J., and Bunel, C.: Synthesis, characterization and stabilization of poly(methyl glyoxylate). Polymer 38, 4959 (1997).
113.Brachais, C.H., Duclos, R., Vaugelade, C., Huguet, J., Capelle-Hue, M.L., and Bunel, C.: Poly(methyl glyoxylate), a biodegradable polymeric material for new drug delivery systems. Int. J. Pharm. 169, 23 (1998).
114.Burel, F., Rossignol, L., Pontvianne, P., Hartman, J., Couesnon, N., and Bunel, C.: Synthesis and characterization of poly(ethyl glyoxylate)––a new potentially biodegradable polymer. e-Polymers 3, 407 (2003).
115.Belloncle, B., Burel, F., Oulyadi, H., and Bunel, C.: Study of the in vitro degradation of poly(ethyl glyoxylate). Polym. Degrad. Stab. 93, 1151 (2008).
116.Kaitz, J.A. and Moore, J.S.: Copolymerization of o-phthalaldehyde and ethyl Glyoxylate: cyclic macromolecules with alternating sequence and tunable thermal properties. Macromolecules 47, 5509 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed