Skip to main content Accessibility help

Design of multi-layered TiO2–Fe2O3 photoanodes for photoelectrochemical water splitting: patterning effects on photocurrent density

  • Myeongwhun Pyeon (a1), Meng Wang (a1) (a2), Yakup Gönüllü (a1), Ali Kaouk (a1), Sara Jäckle (a3) (a4), Silke Christiansen (a3) (a4), Taejin Hwang (a5), KyoungIl Moon (a6) and Sanjay Mathur (a1)...

We report the effect of patterning on photoelectrochemical (PEC) water-splitting performance. Oxide–oxide heterostructures based on horizontal and vertical heterojunctions were fabricated on transparent conductive oxide glass by sequential plasma enhanced chemical vapor deposition (PECVD) of individual metal oxide. Featured masks were employed to enable three-dimensional patternings of stripes and cross-bars structures formed by Fe2O3 and TiO2 layers. PEC measurement was carried out by a three-electrode cell. It was found that double layered TiO2//Fe2O3:FTO showed a decrease in PEC performance when compared with single Fe2O3:FTO layer, whereas triple-layered Fe2O3//TiO2//Fe2O3:FTO (both patterned and unpatterned samples) displayed enhanced photocurrent density. The results show that the existence of multiple phase boundaries does not always add up to PEC enhancement observed in single heterojunction.

Corresponding author
Address all correspondence to Sanjay Mathur at
Hide All
1. Millet, P. and Grigoriev, S.: Chapter 2—water electrolysis technologies. In Renewable Hydrogen Technologies, edited by Diéguez, L.M.G.A.M. (Elsevier, Amsterdam, 2013), p. 19.
2. Baykara, S.Z.: Experimental solar water thermolysis. Int. J. Hydrog. Energy 29, 1459 (2004).
3. Armaroli, N. and Balzani, V.: The hydrogen issue. ChemSusChem 4, 21 (2011).
4. Maeda, K. and Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655 (2010).
5. Cesar, I., Sivula, K., Kay, A., Zboril, R., and Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009).
6. Lin, Y., Yuan, G., Sheehan, S., Zhou, S., and Wang, D.: Hematite-based solar water splitting: challenges and opportunities. Energy Env. Sci. 4, 4862 (2011).
7. Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3nanotube arrays. Chem. Mater. 21, 3048 (2009).
8. Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).
9. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., and Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999 (2006).
10. Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 79, 2027 (1983).
11. Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D., and McFarland, E.W.: Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008).
12. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007).
13. Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119 (2011).
14. Warren, S.C., Voïtchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hébert, C., Rothschild, A., and Grätzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).
15. Yang, X., Liu, R., Du, C., Dai, P., Zheng, Z., and Wang, D.: Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. ACS Appl. Mater. Interfaces 6, 12005 (2014).
16. Liu, R., Zheng, Z., Spurgeon, J., and Yang, X.: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504 (2014).
17. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
18. Kim, B.-R., Oh, H.-J., Yun, K.-S., Jung, S.-C., Kang, W., and Kim, S.-J.: Effect of TiO2 supporting layer on Fe2O3 photoanode for efficient water splitting. Progr. Organ. Coat. 76, 1869 (2013).
19. Wang, M., Pyeon, M., Gonullu, Y., Kaouk, A., Shen, S., Guo, L., and Mathur, S.: Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7, 10094 (2015).
20. Mettenbörger, A., Gönüllü, Y., Fischer, T., Heisig, T., Sasinska, A., Maccato, C., Carraro, G., Sada, C., Barreca, D., Mayrhofer, L., Moseler, M., Held, A., and Mathur, S.: Interfacial insight in multi-junction metal oxide photoanodes for water-splitting applications. Nano Energy 19, 415 (2016).
21. Mettenbörger, A., Singh, T., Singh, A.P., Järvi, T.T., Moseler, M., Valldor, M., and Mathur, S.: Plasma-chemical reduction of iron oxide photoanodes for efficient solar hydrogen production. Int. J. Hydrog Energy 39, 4828 (2014).
22. Fu, Z., Jiang, T., Liu, Z., Wang, D., Wang, L., and Xie, T.: Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 129, 358 (2014).
23. Lian, X., Yang, X., Liu, S., Xu, Y., Jiang, C., Chen, J., and Wang, R.: Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method. Appl. Surf. Sci. 258, 2307 (2012).
24. Li, S., Zhang, P., Song, X., and Gao, L.: Ultrathin Ti-doped hematite photoanode by pyrolysis of ferrocene. Int. J. Hydrog. Energy 39, 14596 (2014).
25. Fan, X., Fan, J., Hu, X., Liu, E., Kang, L., Tang, C., Ma, Y., Wu, H., and Li, Y.: Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram. Int. 40, 15907 (2014).
26. Khan, M.A., Woo, S.I., and Yang, O.B.: Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int. J. Hydrog. Energy 33, 5345 (2008).
27. Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., and Lee, S.-T.: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).
28. de Faria, D.L.A., Venâncio Silva, S., and de Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873 (1997).
29. Pena-Flores, J., Palomec-Garfias, A., Marquez-Beltran, C., Sanchez-Mora, E., Gomez-Barojas, E., and Perez-Rodriguez, F.: Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies. Nanoscale Res. Lett. 9, 499 (2014).
30. Katiyar, R.S., Dawson, P., Hargreave, M.M., and Wilkinson, G.R.: Dynamics of the rutile structure III. Lattice dynamics, infrared and Raman spectra of SnO. J. Phys. C: Solid State Phys. 4, 2421 (1971).
31. Bersani, D., Lottici, P., and Montenero, A.: Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30, 355 (1999).
32. Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).
33. van Hal, P.A., Wienk, M.M., Kroon, J.M., Verhees, W.J.H., Slooff, L.H., van Gennip, W.J.H., Jonkheijm, P., and Janssen, R.A.J.: Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15, 118 (2003).
34. Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).
35. Chiang, C.-Y., Aroh, K., Franson, N., Satsangi, V.R., Dass, S., and Ehrman, S.: Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part II. Photoelectrochemical study. Int. J. Hydrog. Energy 36, 15519 (2011).
36. Kumari, S., Singh, A.P., Sonal, , Deva, D., Shrivastav, R., Dass, S., and Satsangi, V.R.: Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. Int. J. Hydrog. Energy 35, 3985 (2010).
37. Mariño-Otero, T., Oliver-Tolentino, M.A., Aguilar-Frutis, M.A., Contreras-Martínez, G., Pérez-Cappe, E., and Reguera, E.: Effect of thickness in hematite films produced by spray pyrolysis towards water photo-oxidation in neutral media. Int. J. Hydrog. Energy 40, 5831 (2015).
38. Cao, J., Liu, L., Hashimoto, A., and Ye, J.: Hematite photo-electrodes with multiple ultrathin SiOx interlayers towards enhanced photoelectrochemical properties. Electrochem. Commun. 48, 17 (2014).
39. Lee, M.H., Park, J.H., Han, H.S., Song, H.J., Cho, I.S., Noh, J.H., and Hong, K.S.: Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. Int. J. Hydrog. Energy 39, 17501 (2014).
40. Mao, S.S.: High throughput growth and characterization of thin film materials. J. Cryst. Growth 379, 123 (2013).
41. Lee, W.J., Shinde, P.S., Go, G.H., and Doh, C.H.: Cathodic shift and improved photocurrent performance of cost-effective Fe2O3 photoanodes. Int. J. Hydrog. Energy 39, 5575 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Pyeon supplementary material
Fig S2

 Unknown (309 KB)
309 KB
Supplementary materials

Pyeon supplementary material
Pyeon supplementary material 1

 Word (499 KB)
499 KB
Supplementary materials

Pyeon supplementary material
Fig S1

 Unknown (360 KB)
360 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed