Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:43:22.868Z Has data issue: false hasContentIssue false

Development of n-type silver-nanoparticles-modified carbon materials doped by triphenylphosphine

Published online by Cambridge University Press:  10 July 2017

Akira Ohnuma*
Affiliation:
Research Laboratories, Toyota Boshoku Corporation, Kariya, Aichi 448-8651, Japan
Kouta Iwasaki
Affiliation:
Research Laboratories, Toyota Boshoku Corporation, Kariya, Aichi 448-8651, Japan
*
Address all correspondence to Akira Ohnuma at akira.onuma@toyota-boshoku.com
Get access

Abstract

Here we report a doping method based on charge transfer interaction for an easily obtainable carbon material, carbon black (acetylene carbon black and Ketjenblack), as a main raw material. The n-type doping of those carbon blacks, generally p-type material, was conducted with a molecular dopant, triphenylphosphine (tpp). The key was to modify the surface of carbon blacks with silver (Ag) nanoparticles to attach tpp molecules on the surface of Ag. Our method is expected to be used for the fabrication of functional devices (such as thermoelectric devices) from p- and n-type materials.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Han, H., Lee, J., Park, D.W. and Shim, S.E.: Surface modification of carbon black by oleic acid for miniemulsion polymerization of styrene. Macromol. Res. 18, 435 (2010).Google Scholar
2.Asthana, A., Maitra, T., Büchel, R., Tiwari, M.K. and Poulikakos, D.: Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black? ACS Appl. Mater. Interfaces 6, 8859 (2014).Google Scholar
3.Araby, S., Meng, Q., Zhang, L., Zaman, I., Majewski, P. and Ma, J.: Elastomeric composites based on carbon nanomaterials. Nanotechnology 26, 112001 (2015).Google Scholar
4.Nonoguchi, Y., Ohashi, K., Kanazawa, R., Ashiba, K., Hata, K., Nakagawa, T., Adachi, C., Tanase, T. and Kawai, T.: Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 3, 3344 (2013).Google Scholar
5.Matsumoto, R., Okabe, Y. and Akuzawa, N.: Thermoelectric properties and performance of n-type and p-type graphite intercalation compounds. J. Electron. Mater. 44, 399 (2015).Google Scholar
6.Fukumaru, T., Fujigaya, T. and Nakashima, N.: Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci. Rep. 5, 7951 (2015).Google Scholar
7.Dai, L., ed.: Carbon Nanotechnology (Elsevier, Dordrecht, Netherlands, 2006), Chapter 6, pp. 127151.Google Scholar
8.Villars, D.S.: Studies on carbon black. II. Grignard analysis. J. Am. Chem. Soc. 70, 3655 (1948).Google Scholar
9.Kanehara, M., Takahashi, H. and Teranishi, T.: Gold(0) porphyrins on gold nanoparticles. Angew. Chem. Int. Ed. 47, 307 (2007).Google Scholar
10.Sakamoto, M., Tanaka, D., Tsunoyama, H., Tsukuda, T., Minagawa, Y., Majima, Y. and Teranishi, T.: Platonic hexahedron composed of six organic faces with an inscribed au cluster. J. Am. Chem. Soc. 134, 816 (2012).Google Scholar
11.Granatier, J., Dubecký, M., Lazar, P., Otyepka, M. and Hobza, P.: Spin-crossing in an organometallic pt–benzene complex. J. Chem. Theory Comput. 9, 1461 (2013).Google Scholar
12.Rekha, T.N., Umadevi, M. and Rajkumar, B.J.M.: Structural and spectroscopic study of adsorption of naphthalene on silver. J. Mol. Struct. 1079, 155 (2015).Google Scholar
13.Vajtai, R., ed.: Springer Handbook of Nanomaterials (Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2013), Chapter 9, pp. 303388.Google Scholar
14.Polte, J.: Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm 17, 6809 (2015).Google Scholar
15.Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60 (2009).Google Scholar
16.Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D. and Xia, Y.: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669 (2011).Google Scholar
17.Yang, T-H., Peng, H-C., Zhou, S., Lee, C-T., Bao, S., Lee, Y-H., Wu, J-M. and Xia, Y.: Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett. 17, 334 (2017).Google Scholar
Supplementary material: File

Ohnuma and Iwasaki supplementary material

Figures S1-S4

Download Ohnuma and Iwasaki supplementary material(File)
File 542.7 KB