Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T16:08:23.460Z Has data issue: false hasContentIssue false

Development of solution-processed nanowire composites for opto-electronics

Published online by Cambridge University Press:  20 December 2016

David S. Ginley*
Affiliation:
National Renewable Energy Laboratory, Process Tech and Adv Concepts, Golden, CO 80401, USA
Shruti Aggarwal
Affiliation:
University School of Basic and Applied Sciences, Guro Gobind Singh Indraprastha University, New Delhi 110075, India
Rajiv Singh
Affiliation:
National Physical Laboratory, New Delhi 110012, India
Tom Gennett
Affiliation:
National Renewable Energy Laboratory, Process Tech and Adv Concepts, Golden, CO 80401, USA
Maikel F. A. M. van Hest
Affiliation:
National Renewable Energy Laboratory, Process Tech and Adv Concepts, Golden, CO 80401, USA
John D. Perkins
Affiliation:
National Renewable Energy Laboratory, Process Tech and Adv Concepts, Golden, CO 80401, USA
*
Address all correspondence to David S. Ginley at David.ginley@nrel.gov
Get access

Abstract

Silver nanowire-based contacts represent one of the major new directions in transparent contacts for opto-electronic devices with the added advantage that they can have Indium-Tin-Oxide-like properties at substantially reduced processing temperatures and without the use of vacuum-based processing. However, nanowires alone often do not adhere well to the substrate or other film interfaces; even after a relatively high-temperature anneal and unencapsulated nanowires show environmental degradation at high temperature and humidity. Here we report on the development of ZnO/Ag-nanowire composites that have sheet resistance below 10 Ω/sq and >90% transmittance from a solution-based process with process temperatures below 200 °C. These films have significant applications potential in photovoltaics and displays.

Type
Functional Oxides Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2. Woods, L.M., Wolk, J., Smith, M., Davande, H., Ribelin, R.M., and Perkins, C.L.: Ag nanowire based transparent conductor for CIGS PV. In IEEE 37th Photovoltaic Specialists Conf. (PVSC), 2011.Google Scholar
3. He, W. and Ye, C.: Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. J. Mater. Sci. Technol. 31, 581 (2015).Google Scholar
4. Kulkarni, G.U., Kiruthika, S., Gupta, R., and Rao, K.D.M.: Towards low cost materials and methods for transparent electrodes. Curr. Opin. Chem. Eng. 8, 60 (2015).CrossRefGoogle Scholar
5. Guo, C.F. and Ren, Z.: Flexible transparent conductors based on metal nanowire networks. Mater. Today 18, 143 (2015).CrossRefGoogle Scholar
6. Mayousse, C., Celle, C., Fraczkiewicz, A., and Simonato, J.-P.: Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale 7, 2107 (2015).Google Scholar
7. Jiu, J., Wang, J., Sugahara, T., Nagao, S., Nogi, M., Koga, H., Suganuma, K., Hara, M., Nakazawa, E., and Uchida, H.: The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv. 5, 27657 (2015).Google Scholar
8. Hosseinzadeh Khaligh, H., Liew, K., Han, Y., Abukhdeir, N.M., and Goldthorpe, I.A.: Silver nanowire transparent electrodes for liquid crystal-based smart windows. Sol. Energy Mater. Sol. Cells 132, 337 (2015).Google Scholar
9. Aggarwal, S., van Hest, M.F.A.M., Perkins, J.D., and Ginley, D.S.: Improving mechanical stability and electrical properties of silver nanowire films with a zinc tin oxide overcoat. In 2014 IEEE 40th Photovoltaic Specialists Conf., 2014, p. 1022.Google Scholar
10. Yoo, J.H., Kim, Y., Han, M.K., Choi, S., Song, K.Y., Chung, K.C., Kim, J.M., and Kwak, J.: Silver nanowire-conducting polymer-ITO hybrids for flexible and transparent conductive electrodes with excellent durability. ACS Appl. Mater. Interfaces 7, 15928 (2015).Google Scholar
11. Chen, Y., Lan, W., Wang, J., Zhu, R., Yang, Z., Ding, D., Tang, G., Wang, K., Su, Q., and Xie, E.: Highly flexible, transparent, conductive and antibacterial films made of spin-coated silver nanowires and a protective ZnO layer. Physica E 76, 88 (2016).Google Scholar
12. Angmo, D., Andersen, T.R., Bentzen, J.J., Helgesen, M., Søndergaard, R.R., Jørgensen, M., Carlé, J.E., Bundgaard, E., and Krebs, F.C.: Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv. Funct. Mater. 25, 4539 (2015).Google Scholar
13. Duan, Y.H., Duan, Y., Chen, P., Tao, Y., Yang, Y.Q., and Zhao, Y.: High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film. Nanoscale Res. Lett. 10, 16711678 (2015).CrossRefGoogle ScholarPubMed
14. Zilberberg, K., Gasse, F., Pagui, R., Polywka, A., Behrendt, A., Trost, S., Heiderhoff, R., Goerrn, P., and Riedl, T.: Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 24, 1671 (2014).Google Scholar
15. Chang, J.-H., Chiang, K.-M., Kang, H.-W., Chi, W.-J., Chang, J.-H., Wu, C.-I., and Lin, H.-W.: A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties. Nanoscale 7, 4572 (2015).Google Scholar
16. Song, T.B., Rim, Y.S., Liu, F., Bob, B., Ye, S., Hsieh, Y.T., and Yang, Y.: Highly robust silver nanowire network for transparent electrode. ACS Appl. Mater. Interfaces 7, 24601 (2015).Google Scholar
17. Shin, D., Kim, T., Ahn, B.T., and Han, S.M.: Solution-processed Ag nanowires plus PEDOT:PSS hybrid electrode for Cu(ln,Ga)Se-2 thin-film solar cells. ACS Appl. Mater. Interfaces 7, 13557 (2015).Google Scholar
18. Perkins, J.D., Aggarwal, S., van Hest, M.F.A.M., Gennett, T., and Ginley, D.S.: Atmospheric pressure processed silver-nanowire (Ag-NW)/ZnO composite transparent conducting contacts. In 42nd IEEE Photovoltaic Specialists Conf. (PVSC), New Orleans, LA, 2015, Presentation p. 604.Google Scholar
19. Ginley, D.S. and Perkins, J.D.: Transparent conductors. In Handbook of Transparent Conductors, edited by Ginley, D.S., Hosono, H., and Paine, D.C. (Springer, New York, 2010), p. 1.Google Scholar
20. Bergeson, J.D.: Nanowire network transparent electrodes for photovoltaics. In TechConnect World 2010, 2010.Google Scholar
21. Göbelt, M., Keding, R., Schmitt, S.W., Hoffmann, B., Jäckle, S., Latzel, M., Radmilović, V.V., Radmilović, V.R., Spiecker, E., and Christiansen, S.: Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy 16, 196 (2015).Google Scholar
22. Spechler, J.A., Nagamatsu, K.A., Sturm, J.C., and Arnold, C.B.: Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode. ACS Appl. Mater. Interfaces 7, 10556 (2015).Google Scholar
23. Kim, A., Lee, H., Kwon, H.-C., Jung, H.S., Park, N.-G., Jeong, S., and Moon, J.: Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale 8, 6308-16 (2016).Google ScholarPubMed
24. Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N., Lee, J.Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., and McGehee, M.D.: Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956 (2015).Google Scholar