Skip to main content

Diamond microelectrode arrays for in vitro neuronal recordings

  • Matthew McDonald (a1), Antonina Monaco (a2), Farnoosh Vahidpour (a1), Ken Haenen (a1), Michele Giugliano (a2) (a3) (a4) and Milos Nesladek (a1) (a5)...

A novel microfabrication technique for microelectrode arrays (MEAs) with a full diamond–cell interface is demonstrated. Boron-doped nano-crystalline diamond (BNCD) is used as a conductive electrode material on metal tracks insulated by intrinsic NCD. MEAs successfully recorded spontaneous electrical activity in rat primary cortical neuronal cultures. Patch-clamp measurements show no alterations to cell membrane passive properties or active firing response, for cell developing ex vivo on diamond. Impedance analysis revealed low impedance magnitude of BNCD electrodes, suitable for multi-unit neuronal recordings. Additionally, the impedance phase of the fabricated electrodes shows a high degree of capacitive coupling, ideal for neuron stimulation.

Corresponding author
Address all correspondence to M. McDonald at and A. Monaco at
Hide All
1.Nebel, C.E., Rezek, B., Shin, D., Uetsuka, H., and Yang, N.: Diamond for bio-sensor applications. J. Phys. D Appl. Phys. 40, 6443 (2007).
2.Kraft, A., Gmbh, G., and Str, K.: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355 (2007).
3.Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., and Haemmerle, H.: Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 377, 486 (2003).
4.Vaitkuviene, A., McDonald, M., Vahidpour, F., Noben, J.-P., Sanen, K., Ameloot, M., Ratautaite, V., Kaseta, V., Biziuleviciene, G., Ramanaviciene, A., Nesladek, M., and Ramanavicius, A.: Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells. New Biotechnol. 32, 7 (2015).
5.Cottance, M., Nazeer, S., Rousseau, L., Lissorgues, G., Bongrain, A., Kiran, R., Scorsone, E., Bergonzo, P., Bendali, A., Picaud, S., and Joucla, S.: Diamond micro-electrode arrays (MEAs): a new route for in-vitro applications. DTIP No. April, 16 (2013).
6.Maybeck, V., Edgington, R., Bongrain, A., Welch, J.O., Scorsone, E., Bergonzo, P., Jackman, R.B., and Offenhäusser, A.: Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc. Mater. 3, 283 (2014).
7.Alcaide, M., Taylor, A., Fjorback, M., Zachar, V., and Pennisi, C.P.: Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation. Front. Neurosci. 10, 87 (2016).
8.Vahidpour, F., Curley, L., Biró, I., Mcdonald, M., Croux, D., Pobedinskas, P., Haenen, K., Giugliano, M., Živcová, Z.V., Kavan, L. and Nesládek, M.: All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Phys. status solidi 214, (2017).
9.Meijs, S., Alcaide, M., Sørensen, C., McDonald, M., Sørensen, S., Rechendorff, K., Gerhardt, A., Nesladek, M., Rijkhoff, N. J. M., and Pennisi, C. P.: Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. J. Neural Eng. 13, 56011 (2016).
10.Edgington, R.J., Thalhammer, A., Welch, J.O., Bongrain, A., Bergonzo, P., Scorsone, E., Jackman, R.B., and Schoepfer, R.: Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 56022 (2013).
11.Kern, W.: The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887 (1990).
12.Pobedinskas, P., Degutis, G., Dexters, W., Janssen, W., Janssens, S.D., Conings, B., Ruttens, B., D'Haen, J., Boyen, H.-G., Hardy, A., Van Bael, M.K., and Haenen, K.: Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl. Phys. Lett. 102, 201609 (2013).
13.Ojovan, S.M., McDonald, M., Rabieh, N., Shmuel, N., Erez, H., Nesladek, M., and Spira, M.E.: Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation. Front. Neuroeng. 7, 1 (2014).
14.Linaro, D., Couto, J., and Giugliano, M.: Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. J. Neurosci. Methods 230, 5 (2014).
15.Mahmud, M., Pulizzi, R., Vasilaki, E., and Giugliano, M.: QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Front. Neuroinform. 8, 26 (2014).
16.Vandevelde, T., Nesladek, M., Quaeyhaegens, C., and Stals, L.: Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition. Thin Solid Films 290–291, 143 (1996).
17.Janssens, S.D., Pobedinskas, P., Vacik, J., Petráková, V., Ruttens, B., D'Haen, J., Nesládek, M., Haenen, K., and Wagner, P.: Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal-insulator transition. New J. Phys. 13 (2011).
18.Merrill, D.R. and Tresco, P.A.: Impedance characterization of microarray recording electrodes in vitro. IEEE Trans. Biomed. Eng. 52, 1960 (2005).
19.Honda, K., Rao, T.N., Tryk, D.A., Fujishima, A., Watanabe, M., Yasui, K., and Masuda, H.: Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J. Electrochem. Soc. 147, 659 (2000).
20.Fromherz, P. and Stett, A.: Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett. 21 75, 1670 (1995).
21.Cogan, S.F., Ludwig, K.A., Welle, C.G. and Takmakov, P.: Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 21001 (2016).
22.Morin, F.O., Takamura, Y., and Tamiya, E.: Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J. Biosci. Bioeng. 100, 131 (2005).
23.Gerwig, R., Fuchsberger, K., Schroeppel, B., Link, G.S., Heusel, G., Kraushaar, U., Schuhmann, W., Stett, A., and Stelzle, M.: PEDOT—CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties. Front. Neuroeng. 5, 8 (2012).
24.Frank, O., Petrák, V., and Tarábková, H.: Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution. Electochem. Acta 87, 518 (2013).
25.Regehr, K.J., Domenech, M., Koepsel, J.T., Carver, K.C., Ellison-zelski, J., Murphy, W.L., Schuler, L.A., Alarid, E.T., and David, J.: Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132 (2009).
26.Nagarah, J. M.: Planar Silicon Patch-Clamp Electrodes Integrated with Polydimethylsiloxane Microfluidics, University of California, Los Angeles, USA, 2009.
27.Krysova, H., Vlckova-Zivcova, Z., Barton, J., Petrak, V., Nesladek, M., Cigler, P., and Kavan, L.: Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification. Phys. Chem. Chem. Phys. 17, 1165 (2015).
28.Garra, J., Long, T., Currie, J., Schneider, T., White, R., and Paranjape, M.: Dry etching of polydimethylsiloxane for microfluidic systems. J. Vac. Sci. Technol. A Vacuum Surf. Film. 20, 975 (2002).
29.Fattahi, P., Yang, G., Kim, G., and Abidian, M.R.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26, 1846 (2014).
30.Piret, G., Hébert, C., Mazellier, J.-P., Rousseau, L., Scorsone, E., Cottance, M., Lissorgues, G., Heuschkel, M.O., Picaud, S., Bergonzo, P., and Yvert, B.: 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed