Skip to main content
×
Home
    • Aa
    • Aa

Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles

  • Ryan L. Marson (a1), Trung Dac Nguyen (a2) and Sharon C. Glotzer (a1) (a2)
Abstract
Abstract

Polymer-based nanomaterials have captured increasing interest over the past decades for their promising use in a wide variety of applications including photovoltaics, catalysis, optics, and energy storage. Bottom-up assembly engineering based on the self- and directed-assembly of polymer-based building blocks has been considered a powerful means to robustly fabricate and efficiently manipulate target nanostructures. Here, we give a brief review of the recent advances in assembly and reconfigurability of polymer-based nanostructures. We also highlight the role of computer simulation in discovering the fundamental principles of assembly science and providing critical design tools for assembly engineering of complex nanostructured materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Sharon C. Glotzer atsglotzer@umich.edu
References
Hide All
1.Glotzer S.C.: Assembly engineering: materials design for the 21st centruy. Chem. Eng. Sci. 121, 39 (2014).
2.Berendsen H.J.C., van der Spoel D., and van Drunen R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 4356 (1995).
3.Plimpton S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995).
4.Anderson J.A. and Glotzer S.C.: the development and expansion of HOOMD-blue through six years of GPU proliferation. arXiv preprint arXiv:1308.5587 (2013).
5.Glaser J., Nguyen T.D., Anderson J.A., Lui P., Spiga F., Millan J.A., Morse D.C., and Glotzer S.C.: Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97107 (2015).
6.Bates F.S. and Fredrickson G.H.: Block copolymers—designer soft materials. Phys. Today 52, 32 (1999).
7.Meuler A.J., Hillmyer M.A., and Bates F.S.: Ordered network mesostructures in block polymer materials. Macromolecules 42, 72217250 (2009).
8.Xu W., Jiang K., Zhang P., and Shi A.-C.: A strategy to explore stable and metastable ordered phases of block copolymers. J. Phys. Chem. B 117, 52965305 (2013).
9.Glotzer S.C. and Solomon M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557562 (2007).
10.Zhang Z., Horsch M.A., Lamm M.H., and Glotzer S.C.: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 13411346 (2003).
11.Iacovella C.R., Horsch M.A., Zhang Z., and Glotzer S.C.: Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. Langmuir 21, 94889494 (2005).
12.Horsch M.A., Zhang Z., and Glotzer S.C.: Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length. J. Chem. Phys. 125, 184903 (2006).
13.Nguyen T.D., Zhang Z., and Glotzer S.C.: Molecular simulation study of self-assembly of tethered V-shaped nanoparticles. J. Chem. Phys. 129, 244903 (2008).
14.Iacovella C.R., Keys A.S., and Glotzer S.C.: Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl. Acad. Sci. U.S.A. 108, 2093520940 (2011).
15.Iacovella C., Keys A., Horsch M., and Glotzer S.: Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase. Phys. Rev. E 75, 14 (2007).
16.Iacovella C.R. and Glotzer S.C.: Phase behavior of ditethered nanospheres. Soft Matter 5, 44924498 (2009).
17.Marson R.L., Phillips C.L., Anderson J.A., and Glotzer S.C.: Phase behavior and complex crystal structures of self-assembled tethered nanoparticle telechelics. Nano Lett. 14, 20712078 (2014).
18.Kotov N.A.: Nanoparticle Assemblies and Superstructures (CRC Press, Boca Raton, FL, 2014).
19.Lahann J.: Recent progress in nano-biotechnology: compartmentalized micro- and nanoparticles via electrohydrodynamic co-jetting. Small 7, 11491156 (2011).
20.Subbiah R., Veerapandian M., and Yun K.S.: Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17, 45594577 (2010).
21.Yue K., Liu C., Guo K., Wu K., Dong X.-H., Liu H., Huang M., Wes- demiotis C., Cheng S.Z.D., and Zhang W.-B.: Exploring shape amphiphiles beyond giant surfactants: molecular design and click synthesis. Polym. Chem. 4, 10561067 (2013).
22.Zhang Y., Lu F., Yager K.G., van der Lelie D., and Gang O.: A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865872 (2013).
23.Macfarlane R.J., Lee B., Jones M.R., Harris N., Schatz G.C., and Mirkin C.A.: Nanoparticle Superlattice Engineering with DNA. Science 334, 204208 (2011).
24.Li W., Kim Y., Li J., and Li M.: Dynamic self-assembly of coordination polymers in aqueous solution. Soft Matter 10, 52315242 (2014).
25.Lee K.J., Yoon J., and Lahann J.: Recent advances with anisotropic particles. Curr. Opin. Colloid Interface Sci. 16, 195202 (2011).
26.Lee K., Yoon J., Rahmanic S., Hwang S., Bhaskar S., Mitragotri S., and Lahann J.: Spontaneous shape reconfigurations in multicompartmental microcylinders. Proc. Natl. Acad. Sci. U.S.A. 109, 1605716062 (2012).
27.Kolb H.C., Finn M.G., and Sharpless K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 20042021 (2001).
28.Lee O.-S., Prytkova T.R., and Schatz G.C.: Using DNA to link gold nanoparticles, polymers and molecules: a theoretical perspective. J. Phys. Chem. Lett. 1, 17811788 (2010).
29.Zhang C., Macfarlane R.J., Young K.L., Choi C.H.J., Hao L., Auyeung E.- l, Liu G., Zhou X., and Mirkin C.A.: A general approach to DNA-programmable atom equivalents. Nat. Mater. 12, 741746 (2013).
30.Zhang W.B., Yu X., Wang C.L., Sun H.J., Hsieh I.F., Li Y., Dong X.H., Yue K., Van Horn R., and Cheng S.Z.D.: macromolecular science: from “nanoatoms” to giant molecules. Macromolecules 47, 12211239 (2014).
31.Yu X., Yue K., Hsieh I.-F., and Li Y.: Giantsurfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proc. Natl. Acad. Sci. U.S.A. 110, 1007810083 (2013).
32.Yu X., Li Y., Dong X.-H., Yue K., Lin Z., Feng X., Huang M., Zhang W.-B., and Cheng S.Z.D.: Giant surfactants based on molecular nanoparticles: Precise synthesis and solution self-assembly. J. Polym. Sci. B: Polym. Phys., 13091325 (2014).
33.Thomas C.S., Glassman M.J., and Olsen B.D.: Solid-state nanostructured materials from self-assembly of a globular protein–polymer diblock copolymer. ACS Nano 5, 56975707 (2011).
34.Olsen B.D.: Self-assembly of globular-protein-containing block copolymers. Macromol. Chem. Phys. 214, 16591668 (2013).
35.Lam C.N. and Olsen B.D.: Phase transitions in concentrated solution self-assembly of globular protein–polymer block copolymers. Soft Matter 9, 23932402 (2013).
36.Han Y., Xiao Y., Zhang Z., Liu B., Zheng P., He S., and Wang W.: Synthesis of polyoxometalate–polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules 42, 65436548 (2009).
37.Rieger J., Antoun T., Lee S.-H., Chenal M., Pembouong G., Haye J.L., Azcarate I., Hasenknopf B., and Lacote E.: Synthesis and characterization of a thermoresponsive polyoxometalate–polymer hybrid. Chemistry 18, 33553361 (2012).
38.Pawar A.B. and Kretzschmar I.: Fabrication, assembly, and application of patchy particles. Macro- Mol. Rapid Commun. 31, 150168 (2010).
39.Sacanna S. and Pine D.: Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96105 (2011).
40.Chang S.S., Shih C.W., Chen C.D., Lai W.C., and Wang C.R.C.: The shape transition of gold nanorods. Langmuir 15, 701709 (1999).
41.Link S., Burda C., Nikoobakht B., and El-sayed M.A.: Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 61526153 (2000).
42.Link S., Wang Z.L., and El-sayed M.A.: How does a gold nanorod melt? J. Phys. Chem. B 104, 78677870 (2000).
43.Kim J.K., Lee E., Lim Y.B., and Lee M.: Supramolecular capsules with gated pores from an amphiphilic rod assembly. Angew. Chem. Int. Ed. Engl. 47, 46624666 (2008).
44.Lee E., Kim J.K., and Lee M.: Reversible scrolling of two-dimensional sheets from self-assembly of laterally-grafted amphiphilic rods. Angew. Chem. Int. Ed. Engl. 48, 3657 (2009).
45.Chockalingam K., Blenner M., and Banta S.: Design and application of stimulus-responsive peptide systems. Prot. Eng., Des. Sel. 20, 155161 (2007).
46.Gebhardt K.E., Ahn S., Venkatachalam G., and Savin D.A.: Rod-sphere transition in polybutadiene-poly(l-lysine) block copolymer assemblies. Langmuir 23, 28512856 (2007).
47.Gebhardt K.E., Ahn S., Venkatachalam G., and Savin D.A.: Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. J. Colloid Interface Sci. 317, 7076 (2008).
48.Yoo J.W. and Mitragotri S.: Polymer particles that switch shape in response to a stimulus. Proc. Nat. Acad. Sci. U.S.A. 107, 1120511210 (2010).
49.Bates F.S. and Fredrickson G.H.: Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525557 (1990).
50.Bates F.S., Hillmyer M.A., Lodge T.P., Bates C.M., Delaney K.T., and Fredrickson G.H.: Multiblock polymers: panacea or Pandora's box? Science 336, 434440 (2012).
51.Epps T.H.III, Cochran E.W., Hardy C.M., Bailey T.S., Waletzko R.S., and Bates F.S.: Network phases in ABC triblock copolymers. Macromolecules 37, 70857088 (2004).
52.Qin J., Bates F.S., and Morse D.C.: Phase behavior of nonfrustrated ABC triblock copolymers: weak and intermediate segregation. Macromolecules 43, 51285136 (2010).
53.Hayashida K., Dotera T., Takano A., and Matsushita Y.: Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 14 (2007).
54.Maye M.M., Kumara M.T., Nykypanchuk D., Sherman W.B., and Gang O.: Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116120 (2010).
55.Gibaud T., Barry E., Zakhary M.J., Henglin M., Ward A., Yang Y., Berciu C., Oldenbourg R., Hagan M.F., Nicastro D., Meyer R.B., and Dogic Z.: Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348351 (2012).
56.Zhang Y., Lu F., van der Lelie D., and Gang O.: Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett. 107, 135701 (2011).
57.Glotzer S.C., Horsch M.A., Iacovella C.R., Zhang X.L., Chan E., and Zhang X.: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287295 (2005).
58.Tschierske C.: Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 19301970 (2007).
59.Phillips C.L., Iacovella C.R., and Glotzer S.C.: Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6, 16931703 (2010).
60.Jayaraman A. and Schweizer K.S.: effective interactions, structure, and phase behavior of lightly tethered nanoparticles in polymer melts. Macromolecules 41, 94309438 (2008).
61.Jayaraman A. and Schweizer K.S.: Structure and assembly of dense solutions and melts of single tethered nanoparticles. J. Chem. Phys. 128, 164904 (2008).
62.Jayaraman A. and Schweizer K.S.: Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix. Macromolecules 42, 84238434 (2009).
63.Hall L.M., Jayaraman A., and Schweizer K.S.: Molecular theories of polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 14, 3848 (2010).
64.Nair N., Wentzel N., and Jayaraman A.: Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix. J. Chem. Phys. 134, 194906 (2011).
65.Iacovella C.R. and Glotzer S.C.: Complex crystal structures formed by the self-assembly of ditethered nanospheres. Nano Lett. 9, 12061211 (2009).
66.Nguyen T.D. and Glotzer S.C.: Reconfigurable assemblies of shape-changing nanorods. ACS nano 4, 25852594 (2010).
67.Horsch M.A., Zhang Z., and Glotzer S.C.: Self-assembly of end-tethered nanorods in a neat system and role of block fractions and aspect ratio. Soft Matter 6, 945954 (2010).
68.Iacovella C.R., Horsch M.A., and Glotzer S.C.: Local ordering of polymer-tethered nanospheres and nanorods and the stabilization of the double gyroid phase. J. Chem. Phys. 129, 044902 (2008).
69.Horsch M.A., Zhang Z., and Glotzer S.C.: Self-assembly of laterally-tethered nanorods. Nano Lett. 6, 24062413 (2006).
70.Horsch M., Zhang Z., and Glotzer S.: Self-assembly of polymer-tethered nanorods. Phys. Rev. Lett. 95, 14 (2005).
71.Capone B., Coluzza I., LoVerso F., Likos C.N., and Blaak R.: telechelic star polymers as self-assembling units from the molecular to the macroscopic scale. Phys. Rev. Lett. 109, 238301 (2012).
72.Urbas A.M., Maldovan M., DeRege P., and Thomas E.L.: Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 18501853 (2002).
73.Maldovan M., Urbas A., Yufa N., Carter W., and Thomas E.: Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 65, 15 (2002).
74.Maldovan M., Ullal C.K., Carter W.C., and Thomas E.L.: Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups. Nat. Mater. 2, 664667 (2003).
75.Maldovan M. and Thomas E.L.: Diamond-structured photonic crystals. Nat. Mater. 3, 593600 (2004).
76.Schroder-Turk G.E., Varslot T., de Campo L., Kapfer S.C., and Mickel W.: A bicontinuous mesophase geometry with hexagonal symmetry. Langmuir: ACS J. Surfaces Colloids 27, 1047510483 (2011).
77.Matsushita Y., Hayashida K., Dotera T., and Takano A.: Kaleidoscopic morphologies from ABC star-shaped terpolymers. J. Phys.: Condens. Matter 23, 284111 (2011).
78.Kirkensgaard J.J.K.: Kaleidoscopic tilings, networks and hierarchical structures in blends of 3-miktoarm star terpolymers. Interface Focus 2, 602607 (2012).
79.Kirkensgaard J.J.K.: Striped networks and other hierarchical structures in A {m}B {m}C {n} (2 m+n)-miktoarm star terpolymer melts. Phys. Rev. E 85, 031802 (2012).
80.Evans M.E., Robins V., and Hyde S.T.: Periodic entanglement II: weavings from hyperbolic line patterns. Acta Crystallogr. A A69, 262275 (2013).
81.Evans M.E. and Hyde S.T.: Periodic entanglement I: networks from hyperbolic reticulations. Acta Crystallogr. A 241261 (2013).
82.Schroder-Turk G.E., de Campo L., Evans M.E., Saba M., Kapfer S.C., Varslot T., Grosse-Brauckmann K., Ramsden S., and Hyde S.T.: Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains. Faraday Discuss. 161, 215247 (2013).
83.Kirkensgaard J.J., Evans M.E., de Campo L., and Hyde S.T.: Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks. Proc. Nat. Acad. Sci. U.S.A. 111, 12711276 (2014).
84.Ma S., Hu Y., and Wang R.. Self-assembly of polymer tethered molecular nanoparticle shape amphiphiles in selective solvents. Macromolecules, 150424124622003 (2015).
85.Lai Y.T., King N.P., and Yeates T.O.: Principles for designing ordered protein assemblies. Trends Cell Biol. 22, 653661 (2012).
86.Damasceno P.F., Engel M., and Glotzer S.C.: predictive self-assembly of polyhedra into complex structures. Science 337, 453457 (2012).
87.Engel M., Damasceno P.F., Phillips C.L., and Glotzer S.C.: Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 18 (2014).
88.Batista V.M.O. and Miller M.A.: Crystallization of deformable spherical colloids. Phys. Rev. Lett. 105, 088305 (2010).
89.Nguyen T.D., Jankowski E., and Glotzer S.C: Self-assembly and reconfigurability of shape-shifting particles. ACS Nano 5, 88928903 (2011).
90.Eshet H., Bruneval F., and Parrinello M.: New Lennard-Jones metastable phase. J. Chem. Phys. 129, 026101 (2008).
91.Saba M., Thiel M., Turner M., Hyde S., Gu M., Grosse-Brauckmann K., Neshev D., Mecke K., and Schroder-Turk G.: Circular dichroism in biological photonic crystals and cubic chiral nets. Phys. Rev. Lett. 106, 103902 (2011).
92.Turner M.D., Saba M., Zhang Q., Cumming B.P., Schroder-Turk G.E., and Gu M.: Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 15 (2013).
93.Saba M., Turner M.D., Mecke K., Gu M., and Schroder-Turk G.E.: Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 116 (2013).
94.Liu F., Hou Y., and Gao S.: Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chem. Soc. Rev. 44, 19742018 (2014).
95.Oganov A.R., Lyakhov A.O., and Valle M.: How evolutionary crystal structure prediction works–and why. Acc. Chem. Res. 44, 227237 (2011).
96.Hansen N. and Ostermeier A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159195 (2001).
97.Miskin M.Z. and Jaeger H.M.: Evolving design rules for the inverse granular packing problem. Soft Matter 10, 3708 (2014).
98.https://www.whitehouse.gov/mgi [accessed April 12, 2015].
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 249
Total number of PDF views: 519 *
Loading metrics...

Abstract views

Total abstract views: 1527 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.