Skip to main content Accessibility help

Domain structures and magnetoelectric effects in multiferroic nanostructures

  • Deyang Chen (a1), Xingsen Gao (a1) and Jun-Ming Liu (a2)


Multiferroic nanostructures have been attracting tremendous attention not only for novel phenomena associated with fundamental physics, but also due to exciting application potentials in future nanoelectronic devices. In this mini-review, we first introduce several fabrication techniques recently developed for single phase and composite multiferroic nanostructures. Then, the topologic vortex domain structures in various ferroic nanostructures, which may bring about additional fundamental discoveries and applications in ultrahigh density recording, are discussed. Particular attention is paid to magnetoelectric effects in multiferroic nanodots, including room temperature electric field induced magnetic domain switching. Finally, existing challenges and new directions, e.g., cross-couplings among multiple functionalities, are prospected. We genuinely hope that this mini-review will arouse the readers' interest in this fascinating field.


Corresponding author

Address all correspondence to Xingsen Gao, Jun-Ming Liu at;


Hide All
1. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).
2. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).
3. Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).
4. Tokura, Y.: Multiferroics-toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145 (2007).
5. Tokura, Y. and Seki, S.: Multiferroics with spiral spin orders. Adv. Mater. 22, 1554 (2010).
6. Ramesh, R. and Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
7. Wang, K.F., Liu, J.M., and Ren, Z.F.: Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321 (2009).
8. Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).
9. Dong, S., Liu, J.-M., Cheong, S.-W., and Ren, Z.: Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519 (2015).
10. Spaldin, N.A., Cheong, S.-W., and Ramesh, R.: Multiferroics: past, present, and future. Phys. Today 63, 38 (2010).
11. Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).
12. Ratcliff, W., Lynn, J.W., Kiryukhin, V., Jain, P., and Fitzsimmons, M.R.: Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering. NPJ Quantum Mater. 1, 16003 (2016).
13. Han, H., Kim, Y., Alexe, M., Hesse, D., and Lee, W.: Nanostructured ferroelectrics: fabrication and structure-property relations. Adv. Mater. 23, 4599 (2011).
14. Jung, I. and Son, J.Y.: Dip-Pen Lithography of BiFeO3 nanodots. J. Am. Ceram. Soc. 95, 3716 (2012).
15. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., and Ono, T.: Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000).
16. Van Waeyenberge, B., Puzic, A., Stoll, H., Chou, K.W., Tyliszczak, T., Hertel, R., Fahnle, M., Bruckl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C.H., and Schutz, G.: Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461 (2006).
17. Yamada, K., Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H., Thiaville, A., and Ono, T.: Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 269 (2007).
18. Naumov, I.I., Bellaiche, L., and Fu, H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).
19. Lu, X., Kim, Y., Goetze, S., Li, X., Dong, S., Werner, P., Alexe, M., and Hesse, D.: Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO3/CoFe2O4 nanodots. Nano Lett. 11, 3202 (2011).
20. Tian, G., Zhang, F.Y., Yao, J.X., Fan, H., Li, P.L., Li, Z.W., Song, X., Zhang, X.Y., Qin, M.H., Zeng, M., Zhang, Z., Yao, J.J., Gao, X.S., and Liu, J.M.: Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10, 1025 (2016).
21. Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., Ralph, D.C., Schlom, D.G., Iniguez, J., Huey, B.D., and Ramesh, R.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370 (2014).
22. Guo, R., You, L., Zhou, Y., Shiuh Lim, Z., Zou, X., Chen, L., Ramesh, R., and Wang, J.: Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013).
23. Liu, H.J., Chen, L.Y., He, Q., Liang, C.W., Chen, Y.Z., Chien, Y.S., Hsieh, Y.H., Lin, S.J., Arenholz, E., Luo, C.W., Chueh, Y.L., Chen, Y.C., and Chu, Y.H.: Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952 (2012).
24. Lipatov, A., Sharma, P., Gruverman, A., and Sinitskii, A.: Optoelectrical molybdenum disulfide (MoS2)-ferroelectric memories. ACS Nano 9, 8089 (2015).
25. Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N., Mougin, A., Ünal, A.A., Kronast, F., Valencia, S., Dkhil, B., Barthélémy, A., and Bibes, M.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).
26. Li, J.H., Levin, I., Slutsker, J., Provenzano, V., Schenck, P.K., Ramesh, R., Ouyang, J., and Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).
27. Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.L., Hao, D., and Ramesh, R.: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).
28. Wang, Y., Hu, J.M., Lin, Y.H., and Nan, C.W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).
29. Miao, Q., Zeng, M., Zhang, Z., Lu, X., Dai, J., Gao, X., and Liu, J.-M.: Self-assembled nanoscale capacitor cells based on ultrathin BiFeO3 films. Appl. Phys. Lett. 104, 182903 (2014).
30. Zhang, F.Y., Miao, Q., Tian, G., Lu, Z.X., Zhao, L.N., Fan, H., Song, X., Li, Z.W., Zeng, M., Gao, X.S., and Liu, J.M.: Unique nano-domain structures in self-assembled BiFeO3 and Pb(Zr,Ti)O3 ferroelectric nanocapacitors. Nanotechnology 27, 015703 (2016).
31. Ma, J., Hu, J., Li, Z., and Nan, C.-W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062 (2011).
32. Liu, H.J., Liang, W.I., Chu, Y.H., Zheng, H.M., and Ramesh, R.: Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. MRS Commun. 4, 31 (2014).
33. Vaz, C.A.F., Hoffman, J., Ahn, C.H., and Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).
34. Zhao, L.N., Lu, Z.X., Zhang, F.Y., Tian, G., Song, X., Li, Z.W., Huang, K.R., Zhang, Z., Qin, M.H., Wu, S.J., Lu, X.B., Zeng, M., Gao, X.S., Dai, J.Y., and Liu, J.M.: Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. Sci. Rep. 5, 9680 (2015).
35. Gao, X.S., Rodriguez, B.J., Liu, L.F., Birajdar, B., Pantel, D., Ziese, M., Alexe, M., and Hesse, D.: Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4, 1099 (2010).
36. Cho, K., Loget, G., and Corn, R.M.: Lithographically patterned nanoscale electrodeposition of plasmonic, bimetallic, semiconductor, magnetic, and polymer nanoring arrays. J. Phys. Chem. C 118, 28993 (2014).
37. Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).
38. Ortega, N., Ashok, K., Scott, J.F., and Ram, S.K.: Multifunctional magnetoelectric materials for device applications. J. Phys.—Condens. Mater. 27, 504002 (2015).
39. Tian, G., Zhao, L., Lu, Z., Yao, J., Fan, H., Li, Z., Li, P., Chen, D., Zhang, X., Qin, M., Zeng, M., Zhang, Z., Dai, J., Gao, X., and Liu, J.-M.: Fabrication of periodically ordered BiFeO3 nanostructured arrays by template-assisted ion beam etching method. Under review.
40. Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).
41. Gao, X.S., Xue, F., Qin, M.H., Liu, J.M., Rodriguez, B.J., Liu, L.F., Alexe, M., and Hesse, D.: Bubble polarization domain patterns in periodically ordered epitaxial ferroelectric nanodot arrays. J. Appl. Phys. 110, 052006 (2011).
42. Landau, L.D. and Lifschitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. J. Sowjetunion 8, 153 (1935).
43. Kittel, C.: Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies. Phys. Rev. 70, 281 (1946).
44. Guslienko, K.Y., Han, X.F., Keavney, D.J., Divan, R., and Bader, S.D.: Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys. Rev. Lett. 96, 067205 (2006).
45. Seki, S., Yu, X.Z., Ishiwata, S., and Tokura, Y.: Observation of skyrmions in a multiferroic material. Science 336, 198 (2012).
46. Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G.S., Scott, J.F., and Gregg, J.M.: Domains in ferroelectric nanodots. Nano Lett. 9, 3359 (2009).
47. Gruverman, A., Wu, D., Fan, H.J., Vrejoiu, I., Alexe, M., Harrison, R.J., and Scott, J.F.: Vortex ferroelectric domains. J. Phys.—Condens. Mater. 20, 342201 (2008).
48. Yadav, A.K., Nelson, C.T., Hsu, S.L., Hong, Z., Clarkson, J.D., Schlepuetz, C.M., Damodaran, A.R., Shafer, P., Arenholz, E., Dedon, L.R., Chen, D., Vishwanath, A., Minor, A.M., Chen, L.Q., Scott, J.F., Martin, L.W., and Ramesh, R.: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).
49. Naumov, I. and Fu, H.: Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007).
50. Wu, Z., Huang, N., Liu, Z., Wu, J., Duan, W., and Gu, B.-L.: Unusual vortex structure in ultrathin Pb(Zr0.5Ti0.5)O3 films. J. Appl. Phys. 101, 014112 (2007).
51. Rodriguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., and Alexe, M.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).
52. Li, J., Li, J.-F., Yu, Q., Chen, Q.N., and Xie, S.: Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems. J. Materiomics 1, 3 (2015).
53. Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.H., Eom, C.B., Schlom, D.G., Chen, L.Q., and Pan, X.Q.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).
54. Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3 . Science 331, 1420 (2011).
55. McGilly, L.J., Schilling, A., and Gregg, J.M.: Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett. 10, 4200 (2010).
56. McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A., and Gregg, J.M.: Mesoscale flux-closure domain formation in single-crystal BaTiO3 . Nat. Commun. 2, 404 (2011).
57. Tang, Y.L., Zhu, Y.L., Ma, X.L., Borisevich, A.Y., Morozovska, A.N., Eliseev, E.A., Wang, W.Y., Wang, Y.J., Xu, Y.B., Zhang, Z.D., and Pennycook, S.J.: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).
58. Chu, Y.-H., Martin, L.W., Holcomb, M.B., and Ramesh, R.: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).
59. Vaz, C.A.F.: Electric field control of magnetism in multiferroic heterostructures. J. Phys—Condens. Mater. 24, 33 (2012).
60. Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., and Nan, C.W.: Full 180 degrees magnetization reversal with electric fields. Sci. Rep. 6, 07507 (2016).
61. Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., and Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006).
62. Chu, Y.H., Martin, L.W., Holcomb, M.B., Gajek, M., Shu Jen, H., Qing, H., Balke, N., Chan Ho, Y., Lee, D., Wei, H., Qian, Z., Pei Ung, Y., Rodriguez, A.F., Scholl, A., Wang, S.X., and Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).
63. Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., and Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).
64. Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., and Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).
65. Wu, S.M., Cybart, S.A., Yi, D., Parker, J.M., Ramesh, R., and Dynes, R.C.: Full electric control of exchange bias. Phys. Rev. Lett. 110, 067202 (2013).
66. Martin, L.W., Chu, Y.-H., Zhan, Q., Ramesh, R., Han, S.-J., Wang, S.X., Warusawithana, M., and Schlom, D.G.: Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl. Phys. Lett. 91, 172513 (2007).
67. Martin, L.W., Chu, Y.-H., Holcomb, M.B., Huijben, M., Yu, P., Han, S.-J., Lee, D., Wang, S.X., and Ramesh, R.: Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050 (2008).
68. Allibe, J., Fusil, S., Bouzehouane, K., Daumont, C., Sando, D., Jacquet, E., Deranlot, C., Bibes, M., and Barthélémy, A.: Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3 . Nano Lett. 12, 1141 (2012).
69. Bea, H., Bibes, M., Ott, F., Dupe, B., Zhu, X.H., Petit, S., Fusil, S., Deranlot, C., Bouzehouane, K., and Barthelemy, A.: Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008).
70. Liu, F., Zhou, Y., Wang, Y.J., Liu, X.Y., Wang, J., and Guo, H.: Negative capacitance transistors with monolayer black phosphorus. NPJ Quantum Mater. 1, 16004 (2016).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed