Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T17:01:19.160Z Has data issue: false hasContentIssue false

Eco-friendly synthesis of egg-white capped silver nanoparticles for rapid, selective, and sensitive detection of Hg(II)

Published online by Cambridge University Press:  04 September 2017

Antonio Tirado-Guizar*
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mérida, Yucatán 97310, México
Geonel Rodriguez-Gattorno
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mérida, Yucatán 97310, México
Francisco Paraguay-Delgado
Affiliation:
Departamento de Física de Materiales, Centro de Investigación en Materiales Avanzados S.C., Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih., México
Gerko Oskam
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mérida, Yucatán 97310, México
Georgina E. Pina-Luis
Affiliation:
Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22500, BC, México
*
Address all correspondence to Antonio Tirado-Guizar at guizarantonio@gmail.com
Get access

Abstract

The synthesis of egg-white (EW) capped silver nanoparticles (NPs) was carried-out in a one-step reaction using crude EWs, which is a reagent that can be easily found. These NPs were applied for the colorimetric detection of Hg2+ ions in solution. The results showed a blue shift of the surface plasmon absorption due to the decrease in Ag NP size upon incorporating Hg through the formation of an Ag–Hg amalgam shell. The probe was used for the selective determination of Hg2+ ions in tap water with excellent selectivity and sensitivity with a detection limit of about 300 nM.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Audrey, M. and Frederic, G.: The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem. 30, 1121 (2006).Google Scholar
2.Kim, Y., Johnson, R.C., and Hupp, J.T.: Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett.. 1, 165 (2001).Google Scholar
3.Lee, J.S., Han, M.S., and Mirkin, C.A.: Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. – Int. Ed. 119, 4171 (2007).Google Scholar
4.Lin, C.Y., Yu, C.J., Lin, Y.H., and Tseng, W.L.: Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal. Chem. 82, 6830 (2010).Google Scholar
5.Huang, C.-C. and Chang, H.-T.: Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun. 12, 1215 (2007).Google Scholar
6.Lee, J.S., Lytton-Jean, A.K.R., Hurst, S.J., and Mirkin, C.A.: Silver nanoparticle - Oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett.. 7, 2112 (2007).Google Scholar
7.Prathna, T.C., Chandrasekaran, N., Raichur, A.M., and Mukherjee, A.: Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B, Biointerfaces 82, 152 (2011).Google Scholar
8.Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., Pyne, S., and Misra, A.: Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A, Physicochem. Eng. Asp. 348, 212 (2009).Google Scholar
9.Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F., and Brookes, P.C.: Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 463–464, 530 (2013).Google Scholar
10.Morcillo, P., Esteban, M., and Cuesta, A.: Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144, 225 (2016).Google Scholar
11.Gunawardena, J., Egodawatta, P., Ayoko, G.A., and Goonetilleke, A.: Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos. Environ. 68, 235 (2013).Google Scholar
12.Moune, S., Gauthier, P.J., and Delmelle, P.: Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 193, 232 (2010).Google Scholar
13.Vallant, B., Kadnar, R., and Goessler, W.: Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J. Anal. At. Spectrom. 22, 322 (2007).Google Scholar
14.Xiaoguo, M., Bei, H., and Meiqing, C.: Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Met. 26, 541 (2007).Google Scholar
15.Li, Y., Chen, C., Li, B., Sun, J., Wang, J., Gao, Y., Zhao, Y., and Chai, Z.: Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Anal. At. Spectrom. 21, 94 (2006).Google Scholar
16.Coronado, E., Gala, R., Martı, C., Palomares, E., Durrant, J.R., and Gratzel, M.: Reversible Colorimetric Probes for Mercury Sensing. J. Am. Chem. Soc. 127, 12351 (2005).Google Scholar
17.Shunmugam, R., Gabriel, G.J., Smith, C.E., Aamer, K.A., and Tew, G.N.: A highly selective colorimetric aqueous sensor for mercury. Chem. – Eur. J. 14, 3904 (2008).Google Scholar
18.Ono, A. and Togashi, H.: Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. – Int. Ed. 43, 4300 (2004).Google Scholar
19.Rastogi, L., Sashidhar, R.B., Karunasagar, D., and Arunachalam, J.: Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118, 111 (2014).Google Scholar
20.Jiang, C., Guan, Z., Rachel Lim, S.Y., Polavarapu, L., and Xu, Q.-H.: Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale 3, 3316 (2011).Google Scholar
21.Lu, R., Yang, D., Cui, D., Wang, Z., and Guo, L.: Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomedicine 7, 2101 (2012).Google Scholar
22.Liu, J., Lee, J., Kim, D., and Kim, Y.: Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Colloids Surf. A, Physicochem. Eng. Asp. 302, 276 (2007).Google Scholar
23.Amino-acid content of foods and biological data on proteins. FAO Nutr. Stud. 24, 1 (1970).Google Scholar
24.Prabhu, S., Saravanamoorthy, S., Ashok, M., and Velmathi, S.: Colorimetric and fluorescent sensing of multi metal ions and anions by salicylaldimine based receptors. J. Lumin. 132, 979 (2012).Google Scholar
25.Pearson, R.G.: Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 64, 561 (1987).Google Scholar
26.Henglein, A. and Brancewicz, C.: Absorption Spectra and Reactions of Colloidal Bimetallic Nanoparticles Containing Mercury. Chem. Mater. 4756, 2164 (1997).Google Scholar
27.Liu, Y., Wang, G., Wang, J., Chen, Y., and Long, Z.: Phase equilibria and thermodynamic functions for Ag-Hg and Cu-Hg binary systems. Thermochim. Acta 547, 83 (2012).Google Scholar
28.Morris, T., Copeland, H., Mclinden, E., Wilson, S., and Szulczewski, G.: The Effects of Mercury Adsorption on the Optical Response of Size-Selected Gold and Silver Nanoparticles. Langmuir 18, 7261 (2002).Google Scholar
29.Barraud, A., Zylberajch-Antoine, C., Roulet, H., and Dufour, G.: XPS characterization of inserted mercury sulfide single layers in a Langmuir-Blodgett matrix. Appl. Surf. Sci. 52, 323 (1991).Google Scholar
30.Ren, W., Zhu, C., and Wang, E.: Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4, 5902 (2012).Google Scholar
Supplementary material: File

Tirado-Guizar et al supplementary material

Tirado-Guizar et al supplementary material 1

Download Tirado-Guizar et al supplementary material(File)
File 183.3 KB