Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T00:17:26.468Z Has data issue: false hasContentIssue false

Electronic structure of β-NiOOH with hydrogen vacancies and implications for energy conversion applications

Published online by Cambridge University Press:  02 May 2017

Vicky Fidelsky
Affiliation:
The Nancy and Stephen Grand Technion Energy Program, Technion – Israel Institute of Technology, Haifa 3200003, Israel
David Furman
Affiliation:
Division of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Yuri Khodorkovsky
Affiliation:
Division of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
Yuval Elbaz
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
Yehuda Zeiri
Affiliation:
Division of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel Biomedical Engineering, Ben Gurion University, Beer-Sheva 94105, Israel
Maytal Caspary Toroker*
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
*
Address all Correspondence to M. Caspary Toroker at maytalc@tx.technion.ac.il
Get access

Abstract

Nickel oxide-based materials have attracted significant interest for a variety of energy conversion applications although many of their structures remain unresolved. In this study, Density Functional Theory+U (DFT+U) and hybrid DFT calculations are used to analyze the properties of crystalline nickel oxyhydroxide (β-NiOOH) with hydrogen (H) vacancies. Hydrogen vacancies are found to lower the band gap without creating states inside the band gap. Inter-layer crossing is a possible transport pathway, while intra-layer transport is inhibited. Bulk modulus is not influenced by H vacancies in the crystal. β-NiOOH with H vacancies exhibits good electronic properties, essential for solid electrolytes and anodes in solid oxide fuel cells.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bustamante, M.L., Hubler, B., Gaustad, G., and Babbitt, C.W.: Life cycle assessment of jointly produced solar energy materials: challenges and best practices. Sol. Energy Mater. Sol. Cells 156, 11 (2016).CrossRefGoogle Scholar
2. Sivula, K. and van de Krol, R.: Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).CrossRefGoogle Scholar
3. Toroker, M.C. and Carter, E.A.: Transition metal oxide alloys as potential solar energy conversion materials. J. Mater. Chem. A 1, 2474 (2013).CrossRefGoogle Scholar
4. Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).CrossRefGoogle ScholarPubMed
5. Trotochaud, L., Ranney, J.K., Williams, K.N., and Boettcher, S.W.: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253 (2012).CrossRefGoogle ScholarPubMed
6. Bardé, F., Palacín, M.R., Beaudoin, B., and Tarascon, J.M.: Ozonation: a unique route to prepare nickel oxyhydroxides. Synthesis optimization and reaction mechanism study. Chem. Mater. 17, 470 (2005).CrossRefGoogle Scholar
7. Trotochaud, L., Young, S.L., Ranney, J.K., and Boettcher, S.W.: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744 (2014).CrossRefGoogle ScholarPubMed
8. Fidelsky, V., Butera, V., Zaffran, J., and Toroker, M.C.: Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theor. Chem. Acc. 135, 162 (2016).CrossRefGoogle Scholar
9. Tkalych, A.J., Yu, K., and Carter, E.A.: Structural and electronic features of β-Ni(OH)2 and β-NiOOH from first principles. J. Phys. Chem. C 119, 24315 (2015).CrossRefGoogle Scholar
10. Conesa, J.C.: Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 120, 18999 (2016).CrossRefGoogle Scholar
11. Van der Ven, A., Morgan, D., Meng, Y.S., and Ceder, G.: Phase stability of nickel hydroxides and oxyhydroxides. J. Electrochem. Soc. 153, A210 (2006).CrossRefGoogle Scholar
12. Delahaye-Vidal, A., Beaudoin, B., Sac-Epée, N., Tekaia-Elhsissen, K., Audemer, A., and Figlarz, M.: Structural and textural investigations of the nickel hydroxide electrode. Solid State Ion. 84, 239 (1996).CrossRefGoogle Scholar
13. Fidelsky, V. and Caspary Toroker, M.: Enhanced water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies. J. Phys. Chem. C 120, 25405 (2016).CrossRefGoogle Scholar
14. Diaz-Morales, O., Ferrus-Suspedra, D., and Koper, M.T.M.: The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639 (2016).CrossRefGoogle ScholarPubMed
15. Keer, H.V.: Principles of the Solid State (J. Wiley & Sons, New York, 1993).Google Scholar
16. Tuller, H.L.: Defect engineering: design tools for solid state electrochemical devices. Electrochim. Acta 48, 2879 (2003).CrossRefGoogle Scholar
17. Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
18. Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
19. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
20. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
21. Perdew, J.P., Ernzerhof, M., and Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).CrossRefGoogle Scholar
22. Li, Y.-F. and Selloni, A.: Mosaic texture and double c-axis periodicity of β-NiOOH: insights from first-principles and genetic algorithm calculations. J. Phys. Chem. Lett. 5, 3981 (2014).CrossRefGoogle ScholarPubMed
23. Li, Y.-F. and Selloni, A.: Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx . ACS Catal. 4, 1148 (2014).CrossRefGoogle Scholar
24. Zaffran, J. and Caspary Toroker, M.: Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections versus hybrid functionals. J. Chem. Theory Comput. 12, 3807 (2016).CrossRefGoogle Scholar
25. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
26. Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
27. Fernandez, N., Ferro, Y., and Kato, D.: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models. Acta Mater. 94, 307 (2015).CrossRefGoogle Scholar
28. Toroker, M.C. and Carter, E.A.: Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion. J. Mater. Sci. 50, 5715 (2015).CrossRefGoogle Scholar
29. Rossmeisl, J., Logadottir, A., and Nørskov, J.K.: Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178 (2005).CrossRefGoogle Scholar
30. Burke, M.S., Zou, S., Enman, L.J., Kellon, J.E., Gabor, C.A., Pledger, E., and Boettcher, S.W.: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6, 3737 (2015).CrossRefGoogle ScholarPubMed
31. Fuchs, F. and Bechstedt, F.: Indium-oxide polymorphs from first principles: quasiparticle electronic states. Phys. Rev. B 77, 155107 (2008).CrossRefGoogle Scholar
32. Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79, 235114 (2009).CrossRefGoogle Scholar
33. Isseroff, L.Y. and Carter, E.A.: Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O. Phys. Rev. B 85, 235142 (2012).CrossRefGoogle Scholar
34. Fidelsky, V. and Caspary Toroker, M.: Engineering band edge positions of nickel oxyhydroxide through facet selection. J. Phys. Chem. C 120, 8104 (2016).CrossRefGoogle Scholar
35. Yatom, N. and Toroker, M.: Hazardous doping for photo-electrochemical conversion: the case of Nb-doped Fe2O3 from first principles. Molecules 20, 19900 (2015).CrossRefGoogle ScholarPubMed
36. Neufeld, O. and Toroker, M.C.: Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+U study. J. Phys. Chem. C 119, 5836 (2015).CrossRefGoogle Scholar
37. Liao, P., Toroker, M.C., and Carter, E.A.: Electron transport in pure and doped hematite. Nano Lett. 11, 1775 (2011).CrossRefGoogle ScholarPubMed
38. Muñoz-García, A.B., Ritzmann, A.M., Pavone, M., Keith, J.A., and Carter, E.A.: Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. 47, 3340 (2014).CrossRefGoogle ScholarPubMed
Supplementary material: Image

Fidelsky supplementary material

Fidelsky supplementary material 1

Download Fidelsky supplementary material(Image)
Image 13.1 MB
Supplementary material: PDF

Fidelsky supplementary material

Fidelsky supplementary material 2

Download Fidelsky supplementary material(PDF)
PDF 611 KB