Skip to main content
×
Home
    • Aa
    • Aa

Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature

  • Y. Mei (a1), C. Zhang (a2), Z.V. Vardeny (a2) and O.D. Jurchescu (a1)
Abstract
Abstract

The hybrid halide perovskites combine the low-cost processing characteristics of organic materials with the performance factors of inorganic compounds. Recently the power conversion efficiencies of perovskite photovoltaic solar cells have reached a respective value of ~20%. The charge transport properties were indirectly approximated in these compounds because of lack of available field-effect transistors (FETs). Here we report the fabrication and room-temperature operation of FETs based on the hybrid perovskites. We obtained balanced electron and hole transport with mobilities of ~1 cm2/Vs. We also found that the yield, as well as the operational and environmental stability of the fabricated transistors is limited.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Address all correspondence Z.V. Vardeny, O.D. Jurchescu atval@physics.utah.edu; jurchescu@wfu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. J.B. Goodenough : Metallic oxides. Progr. Solid State Chem. 5, 145 (1971).

2. B.B. Van Aken , T.T.M. Palstra , A. Filippetti , and N.A. Spaldin : The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164 (2004).

3. M.A. Green , A. Ho-Baillie , and H.J. Snaith : The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).

4. S.A. Bretschneider , J. Weickert , J.A. Dorman , and L. Schmidt-Mende : Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater. 2, 040701 (2014).

5. H. Zhou , Q. Chen , G. Li , S. Luo , T.-B. Song , H.-S. Duan , Z. Hong , J. You , Y. Liu , and Y. Yang : Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).

6. Z.-K. Tan , R.S. Moghaddam , M.L. Lai , P. Docampo , R. Higler , F. Deschler , M. Price , A. Sadhanala , L.M. Pazos , D. Credgington , F. Hanusch , T. Bein , H.J. Snaith , and R.H. Friend : Bright light-emitting diodes based on organometal halide perovskite. Nat. Nano 9, 687 (2014).

7. C.C. Stoumpos , C.D. Malliakas , and M.G. Kanatzidis : Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).

8. G. Xing , N. Mathews , S.S. Lim , N. Yantara , X. Liu , D. Sabba , M. Grätzel , S. Mhaisalkar , and T.C. Sum : Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476 (2014).

9. Q. Dong , Y. Fang , Y. Shao , P. Mulligan , J. Qiu , L. Cao , and J. Huang : Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967 (2015).

11. D. Giovanni , H. Ma , J. Chua , M. Grätzel , R. Ramesh , S. Mhaisalkar , N. Mathews , and T.C. Sum : Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553 (2015).

12. J.-H. Im , J. Chung , S.-J. Kim , and N.-G. Park : Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res. Lett. 7, 353 (2012).

13. S. Pang , H. Hu , J. Zhang , S. Lv , Y. Yu , F. Wei , T. Qin , H. Xu , Z. Liu , and G. Cui : NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485 (2014).

14. Y. Tidhar , E. Edri , H. Weissman , D. Zohar , G. Hodes , D. Cahen , B. Rybtchinski , and S. Kirmayer : Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249 (2014).

15. J.H. Noh , S.H. Im , J.H. Heo , T.N. Mandal , and S.I. Seok : Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013).

16. B. Cai , Y. Xing , Z. Yang , W.-H. Zhang , and J. Qiu : High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480 (2013).

17. C.X. Sheng , C. Zhang , Y. Zhai , K. Mielczarek , W. Wang , W. Ma , A. Zakhidov , and Z.V. Vardeny : Exciton versus free carrier photogeneration in organometal trihalide perovskites probed by broadband ultrafast polarization memory dynamics. Phys. Rev. Lett. 114, 116601 (2015).

18. B.-W. Park , B. Philippe , T. Gustafsson , K. Sveinbjörnsson , A. Hagfeldt , E.M.J. Johansson , and G. Boschloo : Enhanced crystallinity in organic–inorganic lead halide perovskites on mesoporous TiO2 via disorder–order phase transition. Chem. Mater. 26, 4466 (2014).

19. A. Kojima , K. Teshima , Y. Shirai , and T. Miyasaka : Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

20. M.M. Lee , J. Teuscher , T. Miyasaka , T.N. Murakami , and H.J. Snaith : Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).

21. A. Mei , X. Li , L. Liu , Z. Ku , T. Liu , Y. Rong , M. Xu , M. Hu , J. Chen , Y. Yang , M. Grätzel , and H. Han : A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).

22. S.D. Stranks , G.E. Eperon , G. Grancini , C. Menelaou , M.J.P. Alcocer , T. Leijtens , L.M. Herz , A. Petrozza , and H.J. Snaith : Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).

23. C. Wehrenfennig , G.E. Eperon , M.B. Johnston , H.J. Snaith , and L.M. Herz : High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014).

24. L. Etgar , P. Gao , Z. Xue , Q. Peng , A.K. Chandiran , B. Liu , M.K. Nazeeruddin , and M. Grätzel : Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396 (2012).

25. C.R. Kagan , D.B. Mitzi , and C.D. Dimitrakopoulos : Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945 (1999).

26. D.B. Mitzi , C.D. Dimitrakopoulos , and L.L. Kosbar : Structurally tailored organic–inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 13, 3728 (2001).

28. S. De Wolf , J. Holovsky , S.-J. Moon , P. Löper , B. Niesen , M. Ledinsky , F.-J. Haug , J.-H. Yum , and C. Ballif : Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035 (2014).

29. M. Liu , M.B. Johnston , and H.J. Snaith : Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).

30. J.W. Ward , M.A. Loth , R.J. Kline , M. Coll , C. Ocal , J.E. Anthony , and O.D. Jurchescu : Tailored interfaces for self-patterning organic thin-film transistors. J. Mater. Chem. 22, 19047 (2012).

31. A. Abrusci , S.D. Stranks , P. Docampo , H.-L. Yip , A.K.Y. Jen , and H.J. Snaith : High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124 (2013).

32. Z. Xiao , Q. Dong , C. Bi , Y. Shao , Y. Yuan , and J. Huang : Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503 (2014).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 66
Total number of PDF views: 672 *
Loading metrics...

Abstract views

Total abstract views: 844 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.