Skip to main content
×
Home

Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction

  • Ian S. McKay (a1), Jay A. Schwalbe (a1) (a2), Emmett D. Goodman (a1), Joshua J. Willis (a1), Arun Majumdar (a3) and Matteo Cargnello (a1) (a2)...
Abstract
Abstract

Nickel–molybdenum (Ni–Mo) materials are widely used functional oxide catalysts for the hydrogen evolution reaction. In this work, we investigate the high activity of Ni–Mo by depositing size-controlled Ni nanocrystals (NCs) onto Mo substrates. We observe a synergistic increase in catalytic activity that does not scale with the Ni–Mo interface length. This evidence points to a bulk electronic interaction of the two metals that is separate from the mechanism of enhancement seen in conventionally co-deposited Ni–Mo electrocatalysts. In addition to elucidating the catalytic behavior of the Ni–Mo system, this work offers a general NC-based paradigm for investigating fundamental interactions and synergistic effects in electrocatalytic materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Matteo Cargnello at mcargnello@stanford.edu
References
Hide All
1. Dunn S.: Hydrogen futures: toward a sustainable energy system. Int. J. Hydrog. Energy 27, 235264 (2002).
2. Holladay J.D., Hu J., King D.L., and Wang Y.: An overview of hydrogen production technologies. Catal. Today 139, 244260 (2009).
3. Simbolotti G.: “International Energy Agency Energy Technology Essentials: Hydrogen Production & Distribution” (2007). https://www.iea.org/publications/freepublications/publication/iea-energy-technology-essentials-hydrogen-production--distribution.html (accessed August 12, 2016).
4. Rostrup-Nielsen J.R. and Rostrup-Nielsen T.: Large-scale hydrogen production. Cattech 6, 150159 (2002).
5. Satyapal S.: 2014 Progress Report for the D.O.E Hydrogen and Fuel Cells Program. DOE/GO-102014-4504, 1–5 (2014).
6. He C., Desai S., Brown G., and Bollepalli S.: PEM fuel cell catalysts: cost, performance, and durability. Electrochem. Soc. Interface 4144 (Fall 2005).
7. Liu D., Lu Q., Luo Y., Sun X., and Asiri A.M.: NiCo 2 S 4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7, 1512215126 (2015).
8. Danilovic N., Subbaraman N., Strmcnik D., Chang K.-C., Paulikas A.P., Stamenkovic V.R., and Markovic N.M.: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. – Int. Ed. Engl. 51, 1249512498 (2012).
9. Quaino P., Juarez F., Santos E., and Schmickler W.: Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol. 5, 846854 (2014).
10. Kibsgaard J., Chen Z., Reinecke B.N., and Jaramillo T.F.: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963969 (2012).
11. Kibsgaard J., Tsai C., Chan K., Benck J.D., Nørskov J.K., Abild-Pedersen F., and Jaramillo T.F.: Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 30223029 (2015).
12. Nørskov J.K., Bligaard T., Logadottir A., Kitchin J.R., Chen J.G., Pandelov S., and Stimming U.: Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).
13. Staszak-Jirkovský J., Malliakas C.D., Lopes P.P., Danilovic N., Kota S.S., Chang K.-C., Genorio B., Strmcnik D., Stamenkovic V.R., Kanatzidis M.G., and Markovic N. M.: Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197203 (2016).
14. Gong M., Zhou W., Tsai M.-C., Zhou J., Guan M., Lin M.-C., Zhang B., Hu Y., Wang D.-Y., Yang J., Pennycook S.J., Hwang B.-J., and Dai H.: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014).
15. Wang H., Lee H.-W., Deng Y., Lu Z., Hsu P.-C., Liu Y., Lin D., and Cui Y.: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).
16. McKone J.R., Warren E.L., Bierman M.J., Boettcher S.W., Brunschwig B.S., Lewis N.S., and Gray H.B.: Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573 (2011).
17. McKone J.R., Sadtler B.F., Werlang C. a, Lewis N.S., and Gray H.B.: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166169 (2013).
18. Kristajic N.: Electrodeposition of Ni – Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int. J. Hydrog. Energy 33, 36763687 (2008).
19. Sanches L.S., Domingues S.H., Marino C.E.B., and Mascaro L.H.: Characterisation of electrochemically deposited Ni–Mo alloy coatings. Electrochem. Commun. 6, 543548 (2004).
20. Raj I.A. and Vasu K.I.: Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits. J. Appl. Electrochem. 22, 471477 (1992).
21. Raj A. and Venkatesan V.K.: Characterization of Ni-Mo and Ni-Mo-Fe alloy coatings for Alkaline HER. Int. J. Hydrog. Energy 13, 215223 (1988).
22. Raj I.A.: Electrocatalysts based on Ni-Mo-Fe composite cathode and hydrated nickel oxide anode for alkaline water electrolysis. Bull. Electrochem. 15, 519523 (1999).
23. Raj I.A. and Vasu K.I.: Transition metal-based hydrogen electrodes in alkaline solution – electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20, 3238 (1990).
24. Brossard J.H.L.: In situ activation by sodium molybdate on various metallic substrates during alkaline water electrolysis. Int. J. Hydrog. Energy 14, 229232 (1989).
25. Cargnello M., Doan-Nguyen V.V.T., Gordon T.R., Diaz R.E., Stach E.A., Gorte R.J., Fornasiero P., and Murray C.B.: Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science. 341, 1619 (2013).
26. Cargnello M., Chen C., Diroll B.T., Doan-Nguyen V.V.T., Gorte R.J., and Murray C.B.: Efficient removal of organic ligands from supported nanocrystals by fast thermal annealing enables catalytic studies on well-defined active phases. J. Am. Chem. Soc. 137, 69066911 (2015).
27. Takeno N.: Atlas of Eh-pH diagrams intercomparison of thermodynamic databases. Natl. Inst. Adv. Ind. Sci. Technol. Tokyo 285 (2005).
28. Cardarelli F.: Materials Handbook: A Concise Desktop Reference (Springer-Verlag London, 2001).
29. Shekhar M., Wang J., Lee W.-S., Williams W.D., Kim S.M., Stach E.A., Miller J.T., Delgass W.N., and Ribeiro F.H.: Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134, 47004708 (2012).
30. Li C.W., Ciston J., and Kanan M.W.: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504507 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
PDF
Supplementary Materials

McKay supplementary material
McKay supplementary material 1

 PDF (2.6 MB)
2.6 MB

Metrics

Full text views

Total number of HTML views: 84
Total number of PDF views: 538 *
Loading metrics...

Abstract views

Total abstract views: 1158 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.