- Cited by 26
-
Cited byCrossref Citations
This article has been cited by the following publications. This list is generated based on data provided by CrossRef.
Guo, Yuan Han, Guangchao and Yi, Yuanping 2019. Impact of alkyl chain branching positions on molecular packing and electron transport of dimeric perylenediimide derivatives. Journal of Energy Chemistry, Vol. 35, Issue. , p. 138.
Jiang, Yingying Chen, Jinyang Sun, Yunlong Li, Qingyuan Cai, Zhengxu Li, Junyu Guo, Yunlong Hu, Wenping and Liu, Yunqi 2019. Fast Deposition of Aligning Edge-On Polymers for High-Mobility Ambipolar Transistors. Advanced Materials, Vol. 31, Issue. 2, p. 1805761.
Patel, Bijal B and Diao, Ying 2018. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology, Vol. 29, Issue. 4, p. 044004.
Creasey, Rhiannon C.G. Mostert, A. Bernardus Nguyen, Tuan A.H. Virdis, Bernardino Freguia, Stefano and Laycock, Bronwyn 2018. Microbial nanowires – Electron transport and the role of synthetic analogues. Acta Biomaterialia, Vol. 69, Issue. , p. 1.
Lin, Fang-Ju Lin, Song-Di Chin, Chih-Hao Chuang, Wei-Tsung and Hsu, Chain-Shu 2018. Novel conjugated polymers based on bis-dithieno[3,2-b;2′,3′-d]pyrrole vinylene donor and diketopyrrolopyrrole acceptor: side chain engineering in organic field effect transistors. Polymer Chemistry, Vol. 9, Issue. 1, p. 28.
Martin, Jaime Davidson, Emily C. Greco, Cristina Xu, Wenmin Bannock, James H. Agirre, Amaia de Mello, John Segalman, Rachel A. Stingelin, Natalie and Daoulas, Kostas Ch. 2018. Temperature-Dependence of Persistence Length Affects Phenomenological Descriptions of Aligning Interactions in Nematic Semiconducting Polymers. Chemistry of Materials, Vol. 30, Issue. 3, p. 748.
Lee, Jin-Ho Kim, Sunkook Kim, Haekyoung and Lee, Jiyoul 2018. Solvent-dependent performance of solution-processed small-molecule organic field-effect transistors. Organic Electronics, Vol. 52, Issue. , p. 184.
Nightingale, James Wade, Jessica Moia, Davide Nelson, Jenny and Kim, Ji-Seon 2018. Impact of Molecular Order on Polaron Formation in Conjugated Polymers. The Journal of Physical Chemistry C, Vol. 122, Issue. 51, p. 29129.
Khim, Dongyoon Luzio, Alessandro Bonacchini, Giorgio Ernesto Pace, Giuseppina Lee, Mi-Jung Noh, Yong-Young and Caironi, Mario 2018. Uniaxial Alignment of Conjugated Polymer Films for High-Performance Organic Field-Effect Transistors. Advanced Materials, Vol. 30, Issue. 20, p. 1705463.
Liu, Zitong Zhang, Guanxin and Zhang, Deqing 2018. Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality. Accounts of Chemical Research, Vol. 51, Issue. 6, p. 1422.
López-Saucedo, Felipe Flores-Rojas, Guadalupe G. López-Saucedo, Janeth Magariños, Beatríz Alvarez-Lorenzo, Carmen Concheiro, Angel and Bucio, Emilio 2018. Antimicrobial silver-loaded polypropylene sutures modified by radiation-grafting. European Polymer Journal, Vol. 100, Issue. , p. 290.
Yang, Yizhou Liu, Zitong Chen, Jianmei Cai, Zhengxu Wang, Zhijie Chen, Wei Zhang, Guanxin Zhang, Xisha Chi, Lifeng and Zhang, Deqing 2018. A Facile Approach to Improve Interchain Packing Order and Charge Mobilities by Self-Assembly of Conjugated Polymers on Water. Advanced Science, Vol. 5, Issue. 11, p. 1801497.
Gu, Xiaodan Shaw, Leo Gu, Kevin Toney, Michael F. and Bao, Zhenan 2018. The meniscus-guided deposition of semiconducting polymers. Nature Communications, Vol. 9, Issue. 1,
Bridges, Colin R. Ford, Michael J. Thomas, Elayne M. Gomez, Christian Bazan, Guillermo C. and Segalman, Rachel A. 2018. Effects of Side Chain Branch Point on Self Assembly, Structure, and Electronic Properties of High Mobility Semiconducting Polymers. Macromolecules, Vol. 51, Issue. 21, p. 8597.
Qu, Ge Zhao, Xikang Newbloom, Gregory M. Zhang, Fengjiao Mohammadi, Erfan Strzalka, Joseph W. Pozzo, Lilo D. Mei, Jianguo and Diao, Ying 2017. Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films. ACS Applied Materials & Interfaces, Vol. 9, Issue. 33, p. 27863.
Mohammadi, Erfan Zhao, Chuankai Meng, Yifei Qu, Ge Zhang, Fengjiao Zhao, Xikang Mei, Jianguo Zuo, Jian-Min Shukla, Diwakar and Diao, Ying 2017. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nature Communications, Vol. 8, Issue. , p. 16070.
Yoon, Gyu Bok Kwon, Ho-Young Jung, Seok-Heon Lee, Jin-Kyun and Lee, Jiyoul 2017. Effect of Donor Building Blocks on the Charge-Transfer Characteristics of Diketopyrrolopyrrole-Based Donor–Acceptor-Type Semiconducting Copolymers. ACS Applied Materials & Interfaces, Vol. 9, Issue. 45, p. 39502.
Collins, Samuel D. Ran, Niva A. Heiber, Michael C. and Nguyen, Thuc-Quyen 2017. Small is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells. Advanced Energy Materials, Vol. 7, Issue. 10, p. 1602242.
Bridges, Colin R. Ford, Michael J. Popere, Bhooshan C. Bazan, Guillermo C. and Segalman, Rachel A. 2016. Formation and Structure of Lyotropic Liquid Crystalline Mesophases in Donor–Acceptor Semiconducting Polymers. Macromolecules, Vol. 49, Issue. 19, p. 7220.
Ryu, Gi-Seong Chen, Zhihua Usta, Hakan Noh, Yong-Young and Facchetti, Antonio 2016. Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water. MRS Communications, Vol. 6, Issue. 01, p. 47.
Google Scholar CitationsView all Google Scholar citations for this article.
Scopus Citations -
Get access
Add to cart USD35.00 Added An error has occurred,
please try again later.
Engineering semiconducting polymers for efficient charge transport
- Polymers and Soft Matter
- Scott Himmelberger (a1) and Alberto Salleo (a1)
- (a1)
Materials Science and Engineering ,Stanford University ,Stanford ,California 94305 -
- https://doi.org/10.1557/mrc.2015.44
- Published online: 26 June 2015
-
Part of:
Electronic performance in semiconducting polymers has improved dramatically in recent years owing to a host of novel materials and processing techniques. Our understanding of the factors governing charge transport in these materials has also been enhanced through advancements in both experimental and computational techniques, with disorder appearing to play a central role. In this prospective, we propose that disorder is an inextricable aspect of polymer morphology which need not be highly detrimental to charge transport if it is embraced and planned for. We discuss emerging guidelines for the synthesis of polymers which are resilient to disorder and present our vision for how future advances in processing and molecular design will provide a path toward further increases in charge-carrier mobility.
-
Hide All1.Chen, C.-C., Chang, W.-H., Yoshimura, K., Ohya, K., You, J., Gao, J., Hong, Z., and Yang, Y.: An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 5670–5677 (2014).2.Knopfmacher, O., Hammock, M.L., Appleton, A.L., Schwartz, G., Mei, J., Lei, T., Pei, J., and Bao, Z.: Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, (2014).3.Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).4.White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., and Sariciftci, N.S.: Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013).5.Yun, H.-J., Kang, S.-J., Xu, Y., Kim, S.O., Kim, Y.-H., Noh, Y.-Y., and Kwon, S.-K.: Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 7300–7307 (2014).6.Kim, G., Kang, S.-J., Dutta, G.K., Han, Y.-K., Shin, T.J., Noh, Y.-Y., and Yang, C.: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 9477–9483 (2014).7.Kang, I., Yun, H.-J., Chung, D.S., Kwon, S.-K., and Kim, Y.-H.: Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896–14899 (2013).8.Lee, J., Han, A.-R., Yu, H., Shin, T.J., Yang, C., and Oh, J.H.: Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 135, 9540–9547 (2013).9.Li, J., Zhao, Y., Tan, H.S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Lin, M., Lim, S.H., Zhou, Y., Su, H., and Ong, B.S.: A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2 (2012).10.Luo, C., Kyaw, A.K.K., Perez, L.A., Patel, S., Wang, M., Grimm, B., Bazan, G.C., Kramer, E.J., and Heeger, A.J.: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764–2771 (2014).11.Tsumura, A., Koezuka, H., and Ando, T.: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 1210–1212 (1986).12.Dong, H., Fu, X., Liu, J., Wang, Z., and Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 6158–6183 (2013).13.Bao, Z., Dodabalapur, A., and Lovinger, A.J.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).14.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).15.Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., Ying, L., Kramer, E.J., Nguyen, T.-Q., Bazan, G.C., and Heeger, A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 2993–2998 (2014).16.Mei, J., Kim, D.H., Ayzner, A.L., Toney, M.F., and Bao, Z.: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130–20133 (2011).17.Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dötz, F., Kastler, M., and Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).18.Li, H., Kim, F.S., Ren, G., and Jenekhe, S.A.: High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J. Am. Chem. Soc. 135, 14920–14923 (2013).19.Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., and Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).20.Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).21.Nielsen, C.B., Turbiez, M., and McCulloch, I.: Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 25, 1859–1880 (2013).22.Liu, T. and Troisi, A.: Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925–933 (2014).23.Salleo, A., Chabinyc, M.L., Yang, M.S., and Street, R.A.: Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 4383–4385 (2002).24.Jimison, L.H., Himmelberger, S., Duong, D.T., Rivnay, J., Toney, M.F., and Salleo, A.: Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. J. Polym. Sci. B: Polym. Phys. 51, 611–620 (2013).25.Kline, R.J., McGehee, M.D., and Toney, M.F.: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222–228 (2006).26.Koch, F.P.V., Rivnay, J., Foster, S., Müller, C., Downing, J.M., Buchaca-Domingo, E., Westacott, P., Yu, L., Yuan, M., Baklar, M., Fei, Z., Luscombe, C., McLachlan, M.A., Heeney, M., Rumbles, G., Silva, C., Salleo, A., Nelson, J., Smith, P., and Stingelin, N.: The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38, 1978–1989 (2013).27.Himmelberger, S., Vandewal, K., Fei, Z., Heeney, M., and Salleo, A.: Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 7151–7157 (2014).28.Zen, A., Pflaum, J., Hirschmann, S., Zhuang, W., Jaiser, F., Asawapirom, U., Rabe, J.P., Scherf, U., and Neher, D.: Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757–764 (2004).29.Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., and Fréchet, J.M.J.: Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15, 1519–1522 (2003).30.Li, W., Yang, L., Tumbleston, J.R., Yan, L., Ade, H., and You, W.: Controlling molecular weight of a high efficiency donor–acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv. Mater. 26, 4456–4462 (2014).31.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).32.Duong, D.T., Toney, M.F., and Salleo, A.: Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. . 86, 205205 (2012).33.Devižis, A., Serbenta, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys. Rev. Lett. 103, 027404 (2009).34.Devizis, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Ultrafast charge carrier mobility dynamics in poly(spirobifluorene-co-benzothiadiazole): influence of temperature on initial transport. Phys. Rev. B 82, 155204 (2010).35.Devižis, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498, 302–306 (2010).36.Fornari, R.P. and Troisi, A.: Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 9997–10007 (2014).37.Qin, T. and Troisi, A.: Relation between structure and electronic properties of amorphous MEH–PPV polymers. J. Am. Chem. Soc. 135, 11247–11256 (2013).38.McMahon, D.P., Cheung, D.L., Goris, L., Dacuña, J., Salleo, A., Troisi:, A.Relation between microstructure and charge transport in polymers of different regioregularity. J. Phys. Chem. C 115, 19386–19393 (2011).39.Noriega, R., Salleo, A., and Spakowitz, A.J.: Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. Proc. Natl. Acad. Sci. USA 110, 16315–16320 (2013).40.Laquai, F., Wegner, G., and Bässler, H.: What determines the mobility of charge carriers in conjugated polymers? Phil. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365, 1473–1487 (2007).41.Scharsich, C., Lohwasser, R.H., Sommer, M., Asawapirom, U., Scherf, U., Thelakkat, M., Neher, D., and Köhler, A.: Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. B: Polym. Phys. 50, 442–453 (2012).42.Pingel, P., Zen, A., Abellón, R.D., Grozema, F.C., Siebbeles, L.D.A., and Neher, D.: Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv. Funct. Mater. 20, 2286–2295 (2010).43.Bolsée, J.-C., Oosterbaan, W.D., Lutsen, L., Vanderzande, D., and Manca, J.: The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv. Funct. Mater. 23, 862–869 (2013).44.Rivnay, J., Noriega, R., Kline, R.J., Salleo, A., and Toney, M.F.: Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011).45.Hindeleh, A.M. and Hosemann, R.: Microparacrystals: the intermediate stage between crystalline and amorphous. J. Mater. Sci. 26, 5127–5133 (1991).46.Rivnay, J., Noriega, R., Northrup, J.E., Kline, R.J., Toney, M.F., and Salleo, A.: Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).47.Assadi, A., Svensson, C., Willander, M., and Inganäs, O.: Field-effect mobility of poly(3-hexylthiophene). Appl. Phys. Lett. 53, 195–197 (1988).48.Yuen, J.D., Fan, J., Seifter, J., Lim, B., Hufschmid, R., Heeger, A.J., and Wudl, F.: High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 133, 20799–20807 (2011).49.Kang, I., An, T.K., Hong, J., Yun, H.-J., Kim, R., Chung, D.S., Park, C.E., Kim, Y.-H., and Kwon, S.-K.: Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv. Mater. 25, 524–528 (2013).50.Donaghey, J.E., Sohn, E.-H., Ashraf, R.S., Anthopoulos, T.D., Watkins, S.E., Song, K., Williams, C.K., and McCulloch, I.: Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polym. Chem. 4, 3537–3544 (2013).51.Yiu, A.T., Beaujuge, P.M., Lee, O.P., Woo, C.H., Toney, M.F., and Fréchet, J.M.J.: Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134, 2180–2185 (2012).52.Mei, J. and Bao, Z.: Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2014).53.Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., and Brédas, J.-L.: Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).54.Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., and Cornil, J.: Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 5804–5809 (2002).55.Olivier, Y., Niedzialek, D., Lemaur, V., Pisula, W., Müllen, K., Koldemir, U., Reynolds, J.R., Lazzaroni, R., Cornil, J., and Beljonne, D.: 25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 2119–2136 (2014).56.Lei, T., Wang, J.-Y., and Pei, J.: Design, synthesis, and structure–property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 1117–1126 (2014).57.Deng, Y., Chen, Y., Zhang, X., Tian, H., Bao, C., Yan, D., Geng, Y., and Wang, F.: Donor–acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules 45, 8621–8627 (2012).58.Troisi, A.: The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 1988–1991 (2011).59.Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5 (2014)..60.Chen, M.S., Lee, O.P., Niskala, J.R., Yiu, A.T., Tassone, C.J., Schmidt, K., Beaujuge, P.M., Onishi, S.S., Toney, M.F., Zettl, A., and Fréchet, J.M.J.: Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 135, 19229–19236 (2013).61.Facchetti, A.: π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2010).62.McCulloch, I., Ashraf, R.S., Biniek, L., Bronstein, H., Combe, C., Donaghey, J.E., James, D.I., Nielsen, C.B., Schroeder, B.C., and Zhang, W.: Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc. Chem. Res. 45, 714–722 (2012).63.Carbone, P. and Troisi, A.: Charge diffusion in semiconducting polymers: analytical relation between polymer rigidity and time scales for intrachain and interchain hopping. J. Phys. Chem. Lett. 5, 2637–2641 (2014).64.Zhang, W., Smith, J., Watkins, S.E., Gysel, R., McGehee, M., Salleo, A., Kirkpatrick, J., Ashraf, S., Anthopoulos, T., Heeney, M., and McCulloch, I.: Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132, 11437–11439 (2010).65.Zhang, X., Bronstein, H., Kronemeijer, A.J., Smith, J., Kim, Y., Kline, R.J., Richter, L.J., Anthopoulos, T.D., Sirringhaus, H., Song, K., Heeney, M., Zhang, W., McCulloch, I., and DeLongchamp, D.M.: Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4 (2013).66.Schuettfort, T., Huettner, S., Lilliu, S., Macdonald, J.E., Thomsen, L., and McNeill, C.R.: Surface and bulk structural characterization of a high-mobility electron-transporting polymer. Macromolecules 44, 1530–1539 (2011).67.Wang, C., Rivnay, J., Himmelberger, S., Vakhshouri, K., Toney, M.F., Gomez, E.D., and Salleo, A.: Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. ACS Appl. Mater. Interfaces 5, 2342–2346 (2013).68.Fornari, R.P. and Troisi, A.: Narrower bands with better charge transport: the counterintuitive behavior of semiconducting copolymers. Adv. Mater. 26, 7627–7631 (2014).69.Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., and Müllen, K.: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605–2612 (2011).70.Pearson, D.S., Pincus, P.A., Heffner, G.W., and Dahman, S.J.: Effect of molecular weight and orientation on the conductivity of conjugated polymers. Macromolecules 26, 1570–1575 (1993).71.Chang, J.-F., Sun, B., Breiby, D.W., Nielsen, M.M., Sölling, T.I., Giles, M., McCulloch, I., and Sirringhaus, H.: Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 4772–4776 (2004).72.Ho, P.K.-H., Chua, L.-L., Dipankar, M., Gao, X.Y., Qi, D.C., Wee, A.T.-S., Chang, J.-F., and Friend, R.H.: Solvent effects on chain orientation and interchain π-interaction in conjugated polymer thin films: direct measurements of the air and substrate interfaces by near-edge x-ray absorption spectroscopy. Adv. Mater. 19, 215–221 (2007).73.Rivnay, J., Steyrleuthner, R., Jimison, L.H., Casadei, A., Chen, Z., Toney, M.F., Facchetti, A., Neher, D., and Salleo, A.: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 5246–5255 (2011).74.Jimison, L.H., Toney, M.F., McCulloch, I., Heeney, M., and Salleo, A.: Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 1568–1572 (2009).75.Li, J., Du, J., Xu, J., Chan, H.L.W., and Yan, F.: The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Appl. Phys. Lett. 100, 033301 (2012).76.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., and Mohialdin Khaffaf, S.: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).77.Pettersson, F., Österbacka, R., Koskela, J., Kilpelä, A., Remonen, T., Zhang, Y., Inkinen, S., Wilén, C.-E., Bollström, R., Toivakka, M., Määttänen, A., Ihalainen, P., and Peltonen, J.: Ion-modulated transistors on paper using phase-separated semiconductor/insulator blends. MRS Commun. 4, 51–55 (2014).78.Cho, J.H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M.J., Lodge, T.P., and Daniel Frisbie, C.: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).
Email your librarian or administrator to recommend adding this journal to your organisation's collection.
- ISSN: 2159-6859
- EISSN: 2159-6867
- URL: /core/journals/mrs-communications
Metrics
* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.
Usage data cannot currently be displayed