Skip to main content
×
Home
    • Aa
    • Aa

Engineering the Reststrahlen band with hybrid plasmon/phonon excitations

  • W. Streyer (a1), K. Feng (a2), Y. Zhong (a1), A.J. Hoffman (a2) and D. Wasserman (a1)...
Abstract
Abstract

There has been increasing interest in so-called phononic materials, which can support surface modes known as surface phonon polaritons, consisting of electromagnetic waves coupled to lattice vibrations at the surface of a polar material. While such excitations have a variety of desirable features, they are limited to the spectral range between a material's longitudinal and transverse optical phonon frequencies. In this work, we demonstrate that for materials whose free-carrier concentrations can be controlled, hybrid plasmonic/phononic modes can be supported across a range of frequencies including those generally forbidden by purely phononic materials.

Copyright
Corresponding author
Address all correspondence to D. Wasserman at dwass@illinois.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. R.-L. Chern , X.-X. Liu , and C.-C. Chang : Particle plasmons of metal nanospheres: application of multiple scattering approach. Phys. Rev. E 76, 016609 (2007).

2. D.M. Koller , U. Hohenester , A. Hohenau , H. Ditlbacher , F. Reil , N. Galler , F.R. Aussenegg , A. Leitner , A. Trügler , and J.R. Krenn : Superresolution Moiré mapping of particle plasmon modes. Phys. Rev. Lett. 104, 143901 (2010).

3. S. Derom , R. Vincent , A. Bouhelier , and G.C.d Francs : Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons. Europhys. Lett. 98, 47008 (2012).

4. M. Scharte , R. Porath , T. Ohms , M. Aeschlimann , J.R. Krenn , H. Ditlbacher , F.R. Aussenegg , and A. Liebsch : Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73, 305310 (2001).

5. S. Foteinopoulou , J.P. Vigneron , and C. Vandenbem : Optical near-field excitations on plasmonic nanoparticle-based structures. Opt. Express 15, 42534267 (2007).

6. D. Heitmann and H. Raether : Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces. Surf. Sci. 59, 1722 (1976).

8. S.A. Maier and H.A. Atwater : Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

9. R. Zia , J.A. Schuller , A. Chandran , and M.L. Brongersma : Plasmonics: the next chip-scale technology. Mater. Today 9, 2027 (2006).

10. J.C. Weeber , Y. Lacroute , and A. Dereux : Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. B 68, 115401 (2003).

11. D.J. Bergman and M.I. Stockman : Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

12. M.T. Hill , M. Marell , E.S.P. Leong , B. Smalbrugge , Y. Zhu , M. Sun , P.J. Van Veldhoven , E.J. Geluk , F. Karouta , Y.S. Oei , R. Nötzel , C.Z. Ning , and M.K. Smit : Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 1110711112 (2009).

13. R.F. Oulton , V.J. Sorger , T. Zentgraf , R.M. Ma , C. Gladden , L. Dai , G. Bartal , and X. Zhang : Plasmon lasers at deep subwavelength scale. Nature 461, 629632 (2009).

14. M.A. Noginov , G. Zhu , A.M. Belgrave , R. Bakker , V.M. Shalaev , E.E. Narimanov , S. Stout , E. Herz , T. Suteewong , and U. Wiesner : Demonstration of a spaser-based nanolaser. Nature 460, 11101112 (2009).

15. P.B. Johnson and R.W. Christy : Optical constants of the noble metals. Phys. Rev. B 6, 43704379 (1972).

16. S. Law , V. Podolskiy , and D. Wasserman : Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. Nanophotonics 2, 103–130 (2013).

17. G.V. Naik , J. Kim , and A. Boltasseva : Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1, 10901099 (2011).

18. G.V. Naik , J. Liu , A.V. Kildishev , V.M. Shalaev , and A. Boltasseva : Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. U.S.A. 109, 88348838 (2012).

19. G.V. Naik , J.L. Schroeder , X. Ni , A.V. Kildishev , T.D. Sands , and A. Boltasseva : Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478489 (2012).

20. J.W. Cleary , R.E. Peale , D.J. Shelton , G.D. Boreman , C.W. Smith , M. Ishigami , R. Soref , A. Drehman , and W.R. Buchwald : IR permittivities for silicides and doped silicon. J. Opt. Soc. Am. B 27, 730734 (2010).

21. J.W. Cleary , W.H. Streyer , N. Nader , S. Vangala , I. Avrutsky , B. Claflin , J. Hendrickson , D. Wasserman , R.E. Peale , W. Buchwald , and R. Soref : Platinum germanides for mid- and long-wave infrared plasmonics. Opt. Express 23, 33163326 (2015).

22. J.C. Ginn , R.L. Jarecki Jr, E.A. Shaner , and P.S. Davids : Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011).

23. M. Shahzad , G. Medhi , R.E. Peale , W.R. Buchwald , J.W. Cleary , R. Soref , G.D. Boreman , and O. Edwards : Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 110, 123105 (2011).

24. W. Streyer , S. Law , G. Rooney , T. Jacobs , and D. Wasserman : Strong absorption and selective emission from engineered metals with dielectric coatings. Opt. Express 21, 91139122 (2013).

25. A. Rosenberg , J. Surya , R. Liu , W. Streyer , S. Law , L. Suzanne Leslie , R. Bhargava , and D. Wasserman : Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors. J. Opt. 16, 094012 (2014).

26. S. Law , L. Yu , and D. Wasserman : Epitaxial growth of engineered metals for mid-infrared plasmonics. J. Vac. Sci. Technol. B 31, 03C121 (2013).

27. S. Law , R. Liu , and D. Wasserman : Doped semiconductors with band-edge plasma frequencies. J. Vac. Sci. Technol. B 32, 052601 (2014).

29. E. Sachet , C.T. Shelton , J.S. Harris , B.E. Gaddy , D.L. Irving , S. Curtarolo , B.F. Donovan , P.E. Hopkins , P.A. Sharma , A.L. Sharma , J. Ihlefeld , S. Franzen , and J.-P. Maria : Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414420 (2015).

30. J.B. Khurgin : How to deal with the loss in plasmonics and metamaterials. Nat. Nano 10, 26 (2015).

31. K. Feng , W. Streyer , Y. Zhong , A.J. Hoffman , and D. Wasserman : Photonic materials, structures and devices for Reststrahlen optics. Opt. Express 23, A1418A1433 (2015).

32. J.D. Caldwell , L. Lindsay , V. Giannini , I. Vurgaftman , T.L. Reinecke , S.A. Maier , and O.J. Glembocki : Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 4468 (2015).

33. Z. Jacob : Nanophotonics: hyperbolic phonon-polaritons. Nat. Mater. 13, 10811083 (2014).

34. J.J. Greffet , R. Carminati , K. Joulain , J.P. Mulet , S. Mainguy , and Y. Chen : Coherent emission of light by thermal sources. Nature 416, 6164 (2002).

35. A. Huber , N. Ocelic , D. Kazantsev , and R. Hillenbrand : Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

36. A.J. Huber , B. Deutsch , L. Novotny , and R. Hillenbrand : Focusing of surface phonon polaritons. Appl. Phys. Lett. 92, 203104 (2008).

37. B. Neuner Iii, D. Korobkin , C. Fietz , D. Carole , G. Ferro , and G. Shvets : Critically coupled surface phonon–polariton excitation in silicon carbide. Opt. Lett. 34, 26672669 (2009).

38. T. Wang , P. Li , B. Hauer , D.N. Chigrin , and T. Taubner : Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 50515055 (2013).

39. J.D. Caldwell , O.J. Glembocki , Y. Francescato , N. Sharac , V. Giannini , F.J. Bezares , J.P. Long , J.C. Owrutsky , I. Vurgaftman , J.G. Tischler , V.D. Wheeler , N.D. Bassim , L.M. Shirey , R. Kasica , and S.A. Maier : Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 36903697 (2013).

40. S. Dai , Z. Fei , Q. Ma , A.S. Rodin , M. Wagner , A.S. McLeod , M.K. Liu , W. Gannett , W. Regan , K. Watanabe , T. Taniguchi , M. Thiemens , G. Dominguez , A.H.C. Neto , A. Zettl , F. Keilmann , P. Jarillo-Herrero , M.M. Fogler , and D.N. Basov : Tunable phonon polaritons in atomically thin van der Waals crystals of Boron Nitride. Science 343, 11251129 (2014).

41. J.D. Caldwell , A.V. Kretinin , Y. Chen , V. Giannini , M.M. Fogler , Y. Francescato , C.T. Ellis , J.G. Tischler , C.R. Woods , A.J. Giles , M. Hong , K. Watanabe , T. Taniguchi , S.A. Maier , and K.S. Novoselov : Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

42. R.A. Soref , Z. Qiang , and W. Zhou : Far infrared photonic crystals operating in the Reststrahl region. Opt. Express 15, 1063710648 (2007).

43. K. Feng , W. Streyer , S.M. Islam , J. Verma , D. Jena , D. Wasserman , and A.J. Hoffman : Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 107, 081108 (2015).

44. W. Streyer , S. Law , A. Rosenberg , C. Roberts , V.A. Podolskiy , A.J. Hoffman , and D. Wasserman : Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Appl. Phys. Lett. 104, 131105 (2014).

45. S. Vassant , F. Marquier , J.J. Greffet , F. Pardo , and J.L. Pelouard : Tailoring GaAs terahertz radiative properties with surface phonons polaritons. Appl. Phys. Lett. 97, 161101 (2010).

46. S. Vassant , F. Pardo , P. Bouchon , R. Hadar , F. Marquier , J.J. Greffet , and J.L. Pelouard : Influence of a depletion layer on localized surface waves in doped semiconductor nanostructures. Appl. Phys. Lett. 100, 091103 (2012).

47. C.G. Olson and D.W. Lynch : Longitudinal-optical-phonon–plasmon coupling in GaAs. Phys. Rev. 177, 12311234 (1969).

48. P. Gu , M. Tani , K. Sakai , and T.-R. Yang : Detection of terahertz radiation from longitudinal optical phonon–plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna. Appl. Phys. Lett. 77, 17981800 (2000).

49. P. Gu , M. Tani , S. Kono , K. Sakai , and X.-C. Zhang : Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 91, 55335537 (2002).

50. M.P. Hasselbeck , D. Stalnaker , L.A. Schlie , T.J. Rotter , A. Stintz , and M. Sheik-Bahae : Emission of terahertz radiation from coupled plasmon–phonon modes in InAs. Phys. Rev. B 65, 233203 (2002).

51. T. Dekorsy , H. Auer , C. Waschke , H.J. Bakker , H.G. Roskos , H. Kurz , V. Wagner , and P. Grosse : Emission of submillimeter electromagnetic waves by coherent phonons. Phys. Rev. Lett. 74, 738741 (1995).

52. K.S. Singwi and M.P. Tosi : Interaction of plasmons and optical phonons in degenerate semiconductors. Phys. Rev. 147, 658662 (1966).

53. O.K. Kim and W.G. Spitzer : Study of plasmon LO-phonon coupling in Te-doped Ga1-xAlxAs. Phys. Rev. B 20, 32583266 (1979).

54. A.A. Kukharskii : Plasmon-phonon coupling in GaAs. Solid State Commun. 13, 17611765 (1973).

56. F. Vallée , F. Ganikhanov , and F. Bogani : Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs. Phys. Rev. B 56, 1314113146 (1997).

57. E.H. Hwang , R. Sensarma , and S. Das Sarma : Plasmon–phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).

58. Y. Liu and R.F. Willis : Plasmon–phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 81, 081406 (2010).

59. S. Dai , Q. Ma , M.K. Liu , T. Andersen , Z. Fei , M.D. Goldflam , M. Wagner , K. Watanabe , T. Taniguchi , M. Thiemens , F. Keilmann , G.C.A.M. Janssen , S.E. Zhu , P. Jarillo Herrero , M.M. Fogler , and D.N. Basov : Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nano 10, 682686 (2015).

60. A. Woessner , M.B. Lundeberg , Y. Gao , A. Principi , P. Alonso-González , M. Carrega , K. Watanabe , T. Taniguchi , G. Vignale , M. Polini , J. Hone , R. Hillenbrand , and F.H.L. Koppens : Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421425 (2015).

61. V.W. Brar , M.S. Jang , M. Sherrott , S. Kim , J.J. Lopez , L.B. Kim , M. Choi , and H. Atwater : Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 38763880 (2014).

62. M.G. Moharam and T.K. Gaylord : Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811818 (1981).

63. M.G. Moharam , T.K. Gaylord , E.B. Grann , and D.A. Pommet : Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 10681076 (1995).

65. W.J. Moore and R.T. Holm : Infrared dielectric constant of gallium arsenide. J. Appl. Phys. 80, 69396942 (1996).

66. P. Berini : Figures of merit for surface plasmon waveguides. Opt. Express 14, 1303013042 (2006).

67. F. Wang and Y.R. Shen : General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 287 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.