Skip to main content

The expanding world of hybrid perovskites: materials properties and emerging applications

  • Sarah Brittman (a1), Gede Widia Pratama Adhyaksa (a1) and Erik Christian Garnett (a1)

Hybrid inorganic–organic perovskites have emerged over the last 5 years as a promising class of materials for optoelectronic applications. Most notably, their solar cells have achieved power conversion efficiencies above 20% in an unprecedented timeframe; however, many fundamental questions still remain about these materials. This Prospective Article reviews the procedures used to deposit hybrid perovskites and describes the resulting crystallographic and morphological structures. It further details the electrical and optical properties of perovskites and then concludes by highlighting a number of potential applications and the materials challenges that must be overcome before they can be realized.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The expanding world of hybrid perovskites: materials properties and emerging applications
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The expanding world of hybrid perovskites: materials properties and emerging applications
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The expanding world of hybrid perovskites: materials properties and emerging applications
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Address all correspondence to Erik Christian Garnett
Hide All
1.Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23, 1 (2015).
2.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).
3.Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., and Park, N.-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
4.Liu, M., Johnston, M.B., and Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).
5.Luo, J., Im, J.-H., Mayer, M.T., Schreier, M., Nazeeruddin, M.K., Park, N.-G., Tilley, S.D., Fan, H.J., and Gratzel, M.: Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593 (2014).
6.Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., and Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014).
7.Kim, Y.-H., Cho, H., Heo, J.H., Kim, T.-S., Myoung, N., Lee, C.-L., Im, S.H., and Lee, T.-W.: Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248 (2014).
8.Deschler, F., Price, M., Pathak, S., Klintberg, L.E., Jarausch, D., Higler, R., Hu, S., Leijtens, T., Stranks, S.D., Snaith, H.J., Atatu, M., Phillips, R.T., and Friend, R.H.: High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421 (2014).
9.Sutherland, B.R., Hoogland, S., Adachi, M.M., Wong, C.T.O., Sargent, E.H., and Al, S.E.T.: Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947 (2014).
10.Zhang, Q., Ha, S.T., Liu, X., Sum, T.C., and Xiong, Q.: Room-temperature near-infrared high-q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995 (2014).
11.Lee, Y., Kwon, J., Hwang, E., Ra, C.-H., Yoo, W.J., Ahn, J.-H., Park, J.H., and Cho, J.H.: High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 27, 41 (2014).
12.Dou, L., Yang, Y.M., You, J., Hong, Z., Chang, W.-H., Li, G., and Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).
13.Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photon. 8, 506 (2014).
14.Sum, T.C. and Mathews, N.: Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518 (2014).
15.Kazim, S., Nazeeruddin, M.K., Grätzel, M., and Ahmad, S.: Perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. – Int. Ed. Engl. 53, 2812 (2014).
16.Jung, H.S. and Park, N.-G.: Perovskite solar cells: from materials to devices. Small 11, 10 (2014).
17.Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., and Guo, Z.: Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 64, 702 (2008).
18.Swainson, I., Chi, L., Her, J.H., Cranswick, L., Stephens, P., Winkler, B., Wilson, D.J., and Milman, V.: Orientational ordering, tilting and lone-pair activity in the perovskite methylammonium tin bromide, CH3NH3SnBr3. Acta Crystallogr. B 66, 422 (2010).
19.Onoda-Yamamuro, N., Matsuo, T., and Suga, H.: Study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935 (1992).
20.Knop, O., Wasylishen, E., White, M.A., Stanley, T., and Michiel, J.M.: Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = C1, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68, 412 (1989).
21.Poglitsch, A. and Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987).
22.Williams, S.T., Zuo, F., Chueh, C., Liao, C., Liang, P., and Jen, A.K.: Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640 (2014).
23.Nanova, D., Kast, A.K., Pfannmo, M., Mu, C., Veith, L., Wacker, I., Agari, M., Hermes, W., Erk, P., Kowalsky, W., Der, R.R.S., and Lovrinc, R.: Unraveling the nanoscale morphologies of mesoporous perovskite solar cells and their correlation to device performance. Nano Lett. 14, 2735 (2014).
24.Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).
25.Sutherland, B.R., Hoogland, S., Adachi, M.M., Kanjanaboos, P., Wong, C.T.O., McDowell, J.J., Xu, J., Voznyy, O., Ning, Z., Houtepen, A.J., and Sargent, E.H.: Perovskite thin films via atomic layer deposition. Adv. Mater. 27, 53 (2014).
26.Wharf, I., Gramstad, T., Makhija, R., and Onyszchuk, M.: Synthesis and vibrational spectra of some lead(II) halide adducts with. Can. J. Chem. 54, 3430 (1976).
27.Alvarado, R.J., Rosenberg, J.M., Andreu, A., Bryan, J.C., Chen, W.-Z., Ren, T., and Kavallieratos, K.: Structural insights into the coordination and extraction of Pb(II) by disulfonamide ligands derived from o-phenylenediamine. Inorg. Chem. 44, 7951 (2005).
28.Persson, I., Lyczko, K., Lundberg, D., Eriksson, L., and Płaczek, A.: Coordination chemistry study of hydrated and solvated lead(II) ions in solution and solid state. Inorg. Chem. 50, 1058 (2011).
29.Haight, G.P. and Peterson, J.R.: Chloro complexes of lead(II). Inorg. Chem. 4, 1073 (1965).
30.Clever, H.L. and Johnston, F.J.: The solubility of some sparingly soluble lead salts: an evaluation of the solubility in water and aqueous electrolyte solution. J. Phys. Chem. Ref. Data 9, 751 (1980).
31.Mitzi, D.B.: Solution-processed inorganic semiconductors. J. Mater. Chem. 14, 2355 (2004).
32.Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., and Snaith, H.J.: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151 (2014).
33.Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Il Seok, S.: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).
34.Heo, J.H., Song, D.H., and Im, S.H.: Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179 (2014).
35.Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., and Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503 (2014).
36.Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., and Park, N.-G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927 (2014).
37.Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).
38.Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Il Seok, S.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013).
39.Xing, G., Mathews, N., Lim, S.S., Yantara, N., Liu, X., Sabba, D., Grätzel, M., Mhaisalkar, S., and Sum, T.C.: Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476 (2014).
40.Sadhanala, A., Deschler, F., Thomas, T.H., Dutton, E., Goedel, K.C., Hanusch, F.C., Lai, M.L., Steiner, U., Bein, T., Docampo, P., Cahen, D., and Friend, R.H.: Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501 (2014).
41.Kitazawa, N., Watanabe, Y., and Nakamura, Y.: Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J. Mater. Sci. Soc. 7, 3585 (2002).
42.Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).
43.Docampo, P., Hanusch, F., Stranks, S.D., Döblinger, M., Feckl, J.M., Ehrensperger, M., Minar, N.K., Johnston, M.B., Snaith, H.J., and Bein, T.: Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv. Energy Mater. 4, 1400355 (2014).
44.Kutes, Y., Ye, L., Zhou, Y., Pang, S., Huey, B.D., and Padture, N.P.: Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335 (2014).
45.Pearson, R.G.: Hard and soft acids and bases, HSAB, part I. J. Chem. Educ. 45, 581 (1968).
46.Pearson, R.G.: Hard and soft acids and bases, HSAB, part II. J. Chem. Educ. 45, 643 (1968).
47.Shimoni-livny, L., Glusker, J.P., and Bock, C.W.: Lone pair functionality in divalent lead compounds. Inorg. Chem. 37, 1853 (1998).
48.Pistor, P., Borchert, J., Fra, W., Csuk, R., and Scheer, R.: Monitoring the phase formation of coevaporated lead halide perovskite thin films by in situ x-ray diffraction. J. Phys. Chem. Lett. 5, 3308 (2014).
49.Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H., Wang, H., Liu, Y., Li, G., and Yang, Y.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622 (2014).
50.Ha, S.T., Liu, X., Zhang, Q., Giovanni, D., Sum, T.C., and Xiong, Q.: Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838 (2014).
51.Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).
52.Grancini, G., Marras, S., Prato, M., Giannini, C., Quarti, C., De Angelis, F., De Bastiani, M., Eperon, G.E., Snaith, H.J., Manna, L., and Petrozza, A.: The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5, 3836 (2014).
53.D'Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., and Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).
54.Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., and Mosca, R.: MAPbI3−xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013).
55.Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., and Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014).
56.Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).
57.Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., and Sum, T.C.: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344 (2013).
58.Zhao, Y. and Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure , charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014).
59.Romeo, A., Terheggen, M., Abou-Ras, D., Bätzner, D.L., Haug, F.-J., Kälin, M., Rudmann, D., and Tiwari, A.N.: Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Prog. Photovolt. Res. Appl. 12, 93 (2004).
60.Tidhar, Y., Edri, E., Weissman, H., Zohar, D., Hodes, G., Cahen, D., Rybtchinski, B., and Kirmayer, S.: Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249 (2014).
61.Yu, H., Wang, F., Xie, F., Li, W., Chen, J., and Zhao, N.: The role of chlorine in the formation process of “CH3NH3PbI3−xClx” perovskite. Adv. Funct. Mater. 24, 7102 (2014).
62.Buin, A., Pietsch, P., Xu, J., Voznyy, O., Ip, A.H., Comin, R., and Sargent, E.H.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281 (2014).
63.Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M., and White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013).
64.Even, J., Pedesseau, L., Jancu, J.-M., and Katan, C.: Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999 (2013).
65.Huang, L. and Lambrecht, W.R.L.: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88, 165203 (2013).
66.Giorgi, G., Fujisawa, J., Segawa, H., and Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213 (2013).
67.Brivio, F., Walker, A.B., and Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).
68.Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., and Huang, J.: Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014).
69.Takahashi, Y., Obara, R., Lin, Z.-Z., Takahashi, Y., Naito, T., Inabe, T., Ishibashi, S., and Terakura, K.: Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563 (2011).
70.Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., and Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384 (2014).
71.You, J., Dou, L., Hong, Z., Li, G., and Yang, Y.: Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 38, 1909 (2013).
72.Sandeep, C.S.S., Cate, S., Schins, J.M., Savenije, T.J., Liu, Y., Law, M., Kinge, S., Houtepen, A.J., and Siebbeles, L.D.A.: High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films. Nat. Commun. 4, 2360 (2013).
73.Long, Q., Dinca, S.A., Schiff, E.A., Yu, M., and Theil, J.: Electron and hole drift mobility measurements on thin film CdTe solar cells. Appl. Phys. Lett. 105, 042106 (2014).
74.Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., and Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72 (2013).
75.Brown, G., Faifer, V., Pudov, A., Anikeev, S., Bykov, E., Contreras, M., and Wu, J.: Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current. Appl. Phys. Lett. 96, 022104 (2010).
76.Kamins, T.I.: Hall mobility in chemically deposited polycrystalline silicon. J. Appl. Phys. 42, 43574365 (1971).
77.Green, M.A.: Silicon Solar Cells: Advanced Principles & Practice (University of New South Wales, Sydney, NSW., 1995), p. 76.
78.Blakemore, J.S.: Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123 (1982).
79.Leijtens, T., Stranks, S.D., Eperon, G.E., Lindblad, R., Johansson, E.M.J., Ball, J.M., Lee, M.M., Snaith, H.J., and McPherson, I.J.: Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147 (2014).
80.Chen, Q., Zhou, H., Song, T.-B., Luo, S., Hong, Z., Duan, H.-S., Dou, L., Liu, Y., and Yang, Y.: Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158 (2014).
81.Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362 (2014).
82.Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W.-S., Barea, E.M., Fabregat-santiago, F., Mora-Sero, I., and Bisquert, J.: General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 14, 888 (2014).
83.Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., and Cahen, D.: Elucidating the charge carrier separation and working mechanism of CH3NH3PbI(3−x)Cl(x) perovskite solar cells. Nat. Commun. 5, 3461 (2014).
84.Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., and Cahen, D.: Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000 (2014).
85.Kim, H.-S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N.-G., and Bisquert, J.: Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013).
86.Bergmann, V.W., Weber, S.A.L., Ramos, F.J., Nazeeruddin, M.K., Grätzel, M., Li, D., Domanski, A.L., Lieberwirth, I., Ahmad, S., and Berger, R.: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).
87.Tarricone, L., Romeo, N., Sberveglier, G., and Mora, S.: Electron and hole diffusion length investigation in CdTe thin films by SPV method. Sol. Energy Mater. 7, 343 (1982).
88.Mikhnenko, O.V., Azimi, H., Scharber, M., Morana, M., Blom, P.W.M., and Loi, M.A.: Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 5, 6960 (2012).
89.Koleilat, G.I., Levina, L., Shukla, H., Myrskog, S.H., Hinds, S., Pattantyus-abraham, A.G., and Sargent, E.H.: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833 (2008).
90.Gottesman, R., Haltzi, E., Gouda, L., Tirosh, S., Bouhadana, Y., Zaban, A., Mosconi, E., and De Angelis, F.: Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662 (2014).
91.Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T., Wojciechowski, K., and Zhang, W.: Anomalous hysteresis in perovskite solar sells. J. Phys. Chem. Lett. 5, 1511 (2014).
92.Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., and McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690 (2014).
93.Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.-W., Park, N.-G., Kang, Y.S., Mora-Sero, I., and Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357 (2014).
94.Noheda, B., Zhong, Z., Cox, D., Shirane, G., Park, S.-E., and Rehrig, P.: Electric-field-induced phase transitions in rhombohedral Pb(Zn1/3Nb2/3)1−xTixO3. Phys. Rev. B 65, 224101 (2002).
95.Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., and Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014).
96.Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., and Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390 (2014).
97.Yang, S.Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.-H., Rossell, M.D., Yu, P., Chu, Y.-H., Scott, J.F., Ager, J.W., Martin, L.W., and Ramesh, R.: Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143 (2010).
98.Seidel, J., Fu, D., Yang, S.-Y., Alarcón-Lladó, E., Wu, J., Ramesh, R., and Ager, J.W.: Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).
99.Lunkenheimer, P., Bobnar, V., Pronin, A.V., Ritus, A.I., Volkov, A.A., and Loidl, A.: Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002).
100.Pontes, F.M., Leite, E.R., Longo, E., Varela, J.A., Araujo, E.B., and Eiras, J.A.: Effects of the postannealing atmosphere on the dielectric properties of (Ba, Sr)TiO3 capacitors: evidence of an interfacial space charge layer. Appl. Phys. Lett. 76, 2433 (2000).
101.Shaw, T.M., Trolier-McKinstry, S., and McIntyre, P.C.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263 (2000).
102.Mizusaki, J., Arai, K., and Fueki, K.: Ionic conduction of the perovskite-type halides. Solid State Ion. 11, 203 (1983).
103.Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., and Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 1, 10 (2014).
104.Stuckelberger, M., Niesen, B., Filipic, M., Moon, S., Yum, J., Topic, M., and Ballif, C.: Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66 (2015).
105.Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., and Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106 (2014).
106.Saba, M., Cadelano, M., Marongiu, D., Chen, F., Sarritzu, V., Sestu, N., Figus, C., Aresti, M., Piras, R., Geddo Lehmann, A., Cannas, C., Musinu, A., Quochi, F., Mura, A., and Bongiovanni, G.: Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).
107.Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K., and Miura, N.: Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619 (2003).
108.Noel, N.K., Abate, A., Stranks, S.D., Parrott, E.S., Burlakov, V.M., Goriely, A., Snaith, H.J., and Al, N.E.T.: Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8, 9815 (2014).
109.Stranks, S.D., Burlakov, V.M., Leijtens, T., Ball, J.M., Goriely, A., and Snaith, H.J.: Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).
110.Wehrenfennig, C., Liu, M., Snaith, H.J., Johnston, M.B., and Herz, L.M.: Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 1300 (2014).
111.Manser, J.S. and Kamat, P.V.: Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737 (2014).
112.Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., and Grätzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. – Int. Ed. Engl. 53, 3151 (2014).
113.Ahrenkiel, R.K.: Measurement of minority-carrier lifetime by time-resolved photoluminescence. Solid. State. Electron. 35, 239 (1992).
114.Maalej, A., Abid, Y., Kallel, A., Daoud, A., Lautié, A., and Romain, F.: Phase transitions and crystal dynamics in the cubic perovskite CH3NH3PBCl3. Solid State Commun. 103, 279 (1997).
115.Calistru, D.M., Mihut, L., Lefrant, S., and Baltog, I.: Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J. Appl. Phys. 82, 5391 (1997).
116.Quarti, C., Grancini, G., Mosconi, E., Bruno, P., Ball, J.M., Lee, M.M., Snaith, H.J., Petrozza, A., and De Angelis, F.: The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279 (2014).
117.Onoda-Yamamuro, N., Matsuo, T., and Suga, H.: Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383 (1990).
118.Hirotsu, S.: Far-infrared reflectivity spectra of CsPbCI3. Phys. Lett. 41, 55 (1972).
119.Ito, S., Tanaka, S., Manabe, K., and Nishino, H.: Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 16995 (2014).
120.Abrusci, A., Stranks, S.D., Docampo, P., Yip, H.-L., Jen, A.K.-Y., and Snaith, H.J.: High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124 (2013).
121.You, J., Hong, Z., Yang, Y.M., Chen, Q., Cai, M., Song, T-B., Chen, C-C., Lu, S., Liu, Y., Zhou, H., and Yang, Y.: Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674 (2014).
122.Xu, B., Sheibani, E., Liu, P., Zhang, J., Tian, H., Vlachopoulos, N., Boschloo, G., Kloo, L., Hagfeldt, A., and Sun, L.: Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Adv. Mater. 26, 6629 (2014).
123.Zhu, Z., Bai, Y., Lee, H.K.H., Mu, C., Zhang, T., Zhang, L., Wang, J., Yan, H., So, S.K., and Yang, S.: Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic−organic hybrid perovskite solar cells. Adv. Funct. Mater. 24, 7357 (2014).
124.Jeon, N.J., Lee, J., Noh, J.H., Nazeeruddin, M.K., and Il Seok, S.: Efficient inorganic−organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 135, 19087 (2013).
125.Ryu, S., Noh, J.H., Jeon, N.J., Chan Kim, Y., Yang, W.S., Seo, J., and Il Seok, S.: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 3, 2614 (2014).
126.De Jong, M.P., Van Ijzendoorn, L.J., and De Voigt, M.J.A.: Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77, 2255 (2000).
127.Voroshazi, E., Verreet, B., Buri, A., Müller, R., Di Nuzzo, D., and Heremans, P.: Influence of cathode oxidation via the hole extraction layer in polymer: fullerene solar cells. Org. Electron. 12, 736 (2011).
128.Kim, S., Konar, A., Hwang, W.-S., Lee, J.H., Lee, J., Yang, J., Jung, C., Kim, H., Yoo, J.-B., Choi, J.-Y., Jin, Y.W., Lee, S.Y., Jena, D., Choi, W., and Kim, K.: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).
129.Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., and Yang, S.: High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. – Int. Ed. Engl. 53, 12571 (2014).
130.Zhao, Y., Nardes, A.M., and Zhu, K.: Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl. Phys. Lett. 104, 213906 (2014).
131.Shrotriya, V., Li, G., Yao, Y., Chu, C.-W., and Yang, Y.: Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073508 (2006).
132.Tao, C., Ruan, S., Xie, G., Kong, X., Shen, L., Meng, F., Liu, C., Zhang, X., Dong, W., and Chen, W.: Role of tungsten oxide in inverted polymer solar cells. Appl. Phys. Lett. 94, 043311 (2009).
133.Chung, I., Song, J., Im, J., Androulakis, J., Malliakas, C.D., Li, H., Freeman, A.J., Kenney, J.T., and Kanatzidis, M.G.: CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 3, 8579 (2012).
134.Leijtens, T., Eperon, G.E., Pathak, S., Abate, A., Lee, M.M., and Snaith, H.J.: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).
135.Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Gratzel, M., and Han, H.: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).
136.Tan, K.W., Moore, D.T., Saliba, M., Sai, H., Estroff, L.A., Hanrath, T., Snaith, H.J., and Wiesner, U.: Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8, 4730 (2014).
137.Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).
138.Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N., Lee, J.Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., and McGehee, M.D.: Polycrystalline tandem photovoltaics using perovskites on top of silicon and CIGS. Energy Environ. Sci. (2015). doi: 10.1039/c4ee03322a.
139.White, T.P., Lal, N.N., and Catchpole, K.R.: Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30 % efficiency. IEEE J. Photovolt. 4, 208 (2014).
140.Eperon, G.E., Burlakov, V.M., Goriely, A., and Snaith, H.J.: Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591 (2014).
141.Kang, M.G., Park, N., and Park, Y.J.: Manufacturing method for transparent electric windows using dye-sensitized TiO2 solar cells. Sol. Energy Mater. Sol. Cells 75, 475 (2003).
142.Lunt, R.R. and Bulovic, V.: Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98, 113305 (2011).
143.Kang, M.-G., Xu, T., Park, H.J., Luo, X., and Guo, L.J.: Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378 (2010).
144.Rowell, M.W., Topinka, M.A., McGehee, M.D., Prall, H-J., Dennler, G., Sariciftci, N.S., Hu, L., and Gruner, G.: App. Phys. Lett. 88, 233506 (2006).
145.Wang, X., Zhi, L., and Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323 (2008).
146.Höfle, S., Schienle, A., Bernhard, C., Bruns, M., Lemmer, U., and Colsmann, A.: Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture. Adv. Mater. 26, 5155 (2014).
147.Hu, S., Xiang, C., Haussener, S., Berger, A.D., and Lewis, N.S.: An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984 (2013).
148.Khaselev, O.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998).
149.Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., and Lewis, N.S.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 2547 (2014).
150.Takamoto, T., Ikeda, E., Kurita, H., and Ohmori, M.: Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381 (1997).
151.Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., and Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014).
152.Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L., and Snaith, H.: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014).
153.Mitzi, D.B.: Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalt. Trans. 1, 1 (2001).
154.Long, G.S., Wei, M., and Willett, R.D.: Crystal structures and magnetic properties of a novel layer perovskite system: (3-Picoliniumylammonium)CuX4 (X = Cl, Br). Inorg. Chem. 36, 3102 (1997).
155.Haxel, G.B., Hedrick, J.B., and Orris, G.J.: US Geological Survey fact sheet 087-02. US Geol. Surv. (2005). <>.
156.Report on critical raw materials for the EU: critical raw materials profiles. Eur. Commun. (2013). <>.
157.Critical materials strategy summary. US Department of Energy (2011). <>.
158.So, F. and Kondakov, D.: Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv. Mater. 22, 3762 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 213
Total number of PDF views: 1332 *
Loading metrics...

Abstract views

Total abstract views: 1603 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2018. This data will be updated every 24 hours.