Skip to main content
×
×
Home

Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges

  • Xiaoshi Qian (a1), Shan Wu (a1), Eugene Furman (a1), Q.M. Zhang (a1) and Ji Su (a2)...
Abstract

As multifunctional electroactive materials, ferroelectric polymers are unique owing to their exceptionally high dielectric strength (>600 MV/m), high flexibility, and easy and low-temperature fabrication into required shapes. Although polyvinylidene difluoride (PVDF)-based ferroelectric polymers have been known for several decades, recent findings reveal the potential of this class of electroactive polymers (EAPs) to achieve giant electroactive responses by tuning the molecular, nano, and meso-structures. This paper presents these advances, including giant electrocaloric effect, giant electroactuation, and large, hysteresis-free polarization response. New developments in materials benefit applications, such as environmentally benign and potentially highly energy-efficient electrical field controlled solid-state refrigeration, artificial muscles, and high-energy and power density electric energy storage devices. The challenges in developing these materials to realize these applications, and strategies to further improve the responses of EAPs will be also discussed.

Copyright
Corresponding author
Address all correspondence Xiaoshi Qian, Q. M. Zhang atxyq5004@psu.edu; qxz1@psu.edu
References
Hide All
1.Valasek, J.: Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475 (1921).
2.Lines, M. and Glass, A.: Principles and Applications of Ferroelectrics and Related Materials (Larendon, Oxford, 1977).
3.Kawai, H.: Piezoelectricity of poly (vinylidene fluoride). Japan. J. Appl. Phys. 8, 975 (1969).
4.Wang, T.T., Herbert, J.M., and Glass, A.M.: The Applications of Ferroelectric Polymers (Blackie; Chapman and Hall, Glasgow, New York, 1988).
5.Sessler, G.M.: Electrets (Laplacian Press, Morgan Hill, CA., 1998).
6.Xu, Y.: Ferroelectric Materials and their Applications (North-Holland; Sole distributors for the USA and Canada, Elsevier Science Pub. Co., Amsterdam, New York, NY, 1991).
7.Ambrosy, A. and Holdik, K.: Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E-Sci. Instrum. 17, 856 (1984).
8.Bhavanasi, V., Kusuma, D.Y., and Lee, P.S.: Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF–TrFE nanotubes synthesized by nanoconfinement. Adv. Energy Mater. 4, 8 (2014).
9.Olsen, R.B., Bruno, D.A., and Briscoe, J.M.: Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709 (1985).
10.Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., Huang, Y., and Rogers, J.A.: High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013).
11.Alpay, S.P., Mantese, J., Trolier-McKinstry, S., Zhang, Q., and Whatmore, R.W.: Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 39, 1099 (2014).
12.Naber, R.C.G., Asadi, K., Blom, P.W.M., de Leeuw, D.M., and de Boer, B.: Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933 (2010).
13.Lovinger, A.J.: Ferroelectric polymers. Science 220, 1115 (1983).
14.Neese, B., Chu, B., Lu, S.-G., Wang, Y., Furman, E., and Zhang, Q.M.: Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821 (2008).
15.Lu, S.-G. and Zhang, Q.: Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983 (2009).
16.Li, X., Lu, S.-G., Chen, X.-Z., Gu, H., Qian, X.-S., and Zhang, Q.M.: Pyroelectric and electrocaloric materials. J. Mater. Chem. C 1, 23 (2013).
17.Cheng, Z. and Zhang, Q.: Field-activated electroactive polymers. MRS Bull. 33, 183 (2008).
18.Sarjeant, W.J., Zirnheld, J., and MacDougall, F.W.: Capacitors. IEEE Trans. Plasma Sci. 26, 1368 (1998).
19.Rabuffi, M. and Picci, G.: Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939 (2002).
20.Chu, B.J., Zhou, X., Ren, K.L., Neese, B., Lin, M.R., Wang, Q., Bauer, F., and Zhang, Q.M.: A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006).
21.Zhou, X., Chen, Q., Zhang, Q.M., and Zhang, S.: Dielectric behavior of bilayer films of P(VDF-CTFE) and low temperature PECVD fabricated Si3N4. IEEE Trans. Dielectr. Electr. Insul. 18, 463 (2011).
22.Zhang, Q.M., Brisson, J.G. II, Joe Smith, J., Calvert, P., Bauer, F., and Knowles, G.: Relaxor ferroelectric polymer based electrotextile for thermal management of soldiers with protective gears, (Proposal Submitted to DARPA BAA 04-12 Addendum 7, 2004) http://www.ee.psu.edu/Directory/FacultyInfo/Zhang/ProposaldarpaSMFMNov1104%20-ECEPart.pdf
23.Li, X., Qian, X.-S., Lu, S.G., Cheng, J., Fang, Z., and Zhang, Q.M.: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99, 052907 (2011).
24.Li, B., Ren, W.J., Wang, X.W., Meng, H., Liu, X.G., Wang, Z.J., and Zhang, Z.D.: Intrinsic electrocaloric effects in ferroelectric poly(vinylidene fluoride–trifluoroethylene) copolymers: roles of order of phase transition and stresses. Appl. Phys. Lett. 96, 102903 (2010).
25.Liu, P.F., Wang, J.L., Meng, X.J., Yang, J., Dkhil, B., and Chu, J.H.: Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010).
26.Rozic, B., Kutnjak, Z., Neese, B., Lu, S.-G., and Zhang, Q.M.: Electrocaloric effect in the relaxor ferroelectric polymer composition P(VDF-TrFE-CFE)0.90-P(VDF-CTFE)0.10. Phase Transit. 83, 819 (2010).
27.Lu, S.G., Rozic, B., Zhang, Q.M., Kutnjak, Z., and Neese, B.: Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl. Phys. Lett. 98, 122906 (2011).
28.Skripkin, A.A., Solopov, A.A., Lyashenko, A.V., and Ignatyev, A.A.: High Frequency Air-cooling Radiator has Housing which has Input Portion that is made in Form of Venturi Nozzle, and has Inner Surface with thin Film Electrocaloric Polymer (Tantal Stock Co; Inst Critical Technologies Stock Co; Univ Saratov) RU141660-U1.
29.Basso, V., Russo, F., Gerard, J.-F., and Pruvost, S.: Direct measurement of the electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer films. Appl. Phys. Lett. 103, 202904 (2013).
30.Jia, Y., and Ju, Y.S.: Direct characterization of the electrocaloric effects in thin films supported on substrates. Appl. Phys. Lett. 103, 042903 (2013).
31.Moreira, R.L.: Electrocaloric effect in gamma-irradiated P(VDF–TrFE) copolymers with relaxor features. Ferroelectrics 446, 1 (2013).
32.Guo, D., Gao, J., Yu, Y.-J., Santhanam, S., Fedder, G.K., McGaughey, A.J.H., and Yao, S.C.: Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Appl. Phys. Lett. 105, 031906 (2014).
33.Jia, Y., and Ju, Y.S.: Characterization of the electrocaloric effect and hysteresis loss in relaxor ferroelectric thin films under alternating current bias fields. Appl. Phys. Lett. 104, 251913 (2014).
34.Li, X., Qian, X.-S., Gu, H., Chen, X., Lu, S.G., Lin, M., Bateman, F., and Zhang, Q.M.: Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett. 101, 132903 (2012).
35.Pirc, R., Kutnjak, Z., Blinc, R., and Zhang, Q.M.: Electrocaloric effect in relaxor ferroelectrics. J. Appl. Phys. 110, 074113 (2011).
36.Li, X., Qian, X.-S., Lu, S.G., Cheng, J., Fang, Z., and Zhang, Q.M.: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99, 052907 (2011).
37.Liu, Z.K., Li, X., and Zhang, Q.M.: Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 101, 082904 (2012).
38.Qian, X.-S., Ye, H.-J., Zhang, Y.-T., Gu, H., Li, X., Randall, C.A., and Zhang, Q.M.: Giant electrocaloric response over a broad temperature range in modifi ed BaTiO 3 ceramics. Adv. Funct. Mater. 24, 1300 (2014).
39.Ye, H.-J., Qian, X.-S., Jeong, D.-Y., Zhang, S., Zhou, Y., Shao, W.-Z., Zhen, L., and Zhang, Q.M.: Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl. Phys. Lett. 105, 152908 (2014).
40.Chen, X.-Z., Li, X., Qian, X.-S., Lin, M., Wu, S., Shen, Q.-D., and Zhang, Q.M.: A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer 54, 5299 (2013).
41.Zhang, G., Li, Q., Gu, H., Jiang, S., Han, K., Gadinski, M.R., Haque, M.A., Zhang, Q., and Wang, Q.: Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv. Mater. 27, 1450 (2015).
42.Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S.C., and Zhang, Q.M.: A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).
43.Gu, H., Qian, X.-S., Ye, H.-J., and Zhang, Q.M.: An electrocaloric refrigerator without external regenerator. Appl. Phys. Lett. 105, 162905 (2014).
44.Chen, X.-Z., Qian, X.-S., Li, X., Lu, S.G., Gu, H.-m, Lin, M., Shen, Q.-d, and Zhang, Q.M.: Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Appl. Phys. Lett. 100, 222902 (2012).
45.Chen, X.-Z., Li, X., Qian, X.-S., Wu, S., Lu, S.-G., Gu, H.-M., Lin, M., Shen, Q.-D., and Zhang, Q.M.: A polymer blend approach to tailor the ferroelectric responses in P(VDF-TrFE) based copolymers. Polymer 54, 2373 (2013).
46.Gu, H., Li, X., Lu, S.G., Lin, M., Qian, X., Cheng, J.P., Zhang, Q.M., Cheng, A. and Craven, B.: Compact cooling devices based on giant electrocaloric effect dielectrics. In Proceedings of the Asme Summer Heat Transfer Conference, 2012, Vol 2, 2012, p. 635.
47.Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S.C., and Zhang, Q.M.: A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).
48.Gu, H., Craven, B., Qian, X., Li, X., Cheng, A., and Zhang, Q.M.: Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Appl. Phys. Lett. 102, 112901 (2013).
49.Plaznik, U., Kitanovski, A., Rozic, B., Malic, B., Ursic, H., Drnovsek, S., Cilensek, J., Vrabelj, M., Poredos, A., and Kutnjak, Z.: Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett. 106, 043903 (2015).
50.Chukka, R., Shannigrahi, S., and Chen, L.: Investigations of cooling efficiencies in solid-state electrocaloric device. Integr. Ferroelectr. 133, 3 (2012).
51.Sinyavsky, Y.V. and Brodyansky, V.M.: Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131, 321 (1992).
52.Jia, Y. and Sungtaek, Y.: A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. 100, 242901 (2012).
53.Karmanenko, S.F., Pakhomov, O.V., Prudan, A.M., Starkov, A.S., and Eskov, A.: Layered ceramic structure based on the electrocaloric elements working as a solid state cooling line. J. Eur. Ceram. Soc. 27, 3109 (2007).
54.Ozbolt, M., Kitanovski, A., Tusek, J., and Poredos, A.: Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int. J. Refrig. –Rev. Int. Froid 40, 174 (2014).
55.Guo, D., Gao, J., Yu, Y.-J., Santhanam, S., Slippey, A., Fedder, G.K., McGaughey, A.J.H., and Yao, S.-C.: Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. Int. J. Heat Mass Transfer 72, 559 (2014).
56.Olsen, R.B. and Brown, D.D.: High-efficiency direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 40, 17 (1982).
57.Sinyavsky, Y.V., Pashkov, N.D., Gorovoy, Y.M., and Lugansky, G.E.: The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics 90, 213 (1989).
58.Qian, X.-S., Lu, S.-G., Li, X., Gu, H., Chien, L.-C., and Zhang, Q.: Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Adv. Funct. Mater. 23, 2894 (2013).
59.Zhu, L.: Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677 (2014).
60.Liu, Y., Wei, J., Janolin, P.-E., Infante, I.C., Lou, X., and Dkhil, B.: Giant room-temperature barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3 single crystal. Appl. Phys. Lett. 104, 162904 (2014).
61.Redmond, M., Manickaraj, K., Sullivan, O., Mukhopadhyay, S., and Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 759 (2013).
62.Jordan, J.D. and Carhuapoma, J.R.: Hypothermia: comparing technology. J. Neurol. Sci. 261, 35 (2007).
63.Lovinger, A.J., Furukawa, T., Davis, G.T., and Broadhurst, M.G.: Curie transitions in copolymers of vinylidene fluoride. Ferroelectrics 50, 553 (1983).
64.Lovinger, A.J.: Poly(Vinylidene Fluoride). In Developments in Crystalline Polymers, edited by Bassett, D.C. (Applied Science Publishers, London, 1982), pp. 195273.
65.Huang, C., Klein, R., Xia, F., Li, H.F., Zhang, Q.M., Bauer, F., and Cheng, Z.Y.: Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers. Ieee Trans. Dielectr. Electr. Insulat. 11, 299 (2004).
66.Zhang, Q.M., Bharti, V., and Zhao, X.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101 (1998).
67.Cheng, Z.Y., Xu, T.B., Bharti, V., Wang, S.X., and Zhang, Q.M.: Transverse strain responses in the electrostrictive poly(vinylidene fluoride-trifluorethylene) copolymer. Appl. Phys. Lett. 74, 1901 (1999).
68.Guo, S.S., Zhao, X.Z., Zhou, Q.F., Chan, H.L.W., and Choy, C.L.: High electrostriction and relaxor ferroelectric behavior in proton-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Appl. Phys. Lett. 84, 3349 (2004).
69.Xia, F., Cheng, Z.Y., Xu, H.S., Li, H.F., Zhang, Q.M., Kavarnos, G.J., Ting, R.Y., Abdul-Sedat, G., and Belfield, K.D.: High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv. Mater. 14, 1574 (2002).
70.Xu, H.S., Cheng, Z.Y., Olson, D., Mai, T., Zhang, Q.M., and Kavarnos, G.: Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360 (2001).
71.Garrett, J.T., Roland, C.M., Petchsuk, A., and Chung, T.C.: Electrostrictive behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene). Appl. Phys. Lett. 83, 1190 (2003).
72.Cheng, Z.Y., Zhang, Q.M., and Bateman, F.B.: Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymers. J. Appl. Phys. 92, 6749 (2002).
73.Cheng, Z.Y., Olson, D., Xu, H.S., Xia, F., Hundal, J.S., Zhang, Q.M., Bateman, F.B., Kavarnos, G.J., and Ramotowski, T.: Structural changes and transitional behavior studied from both micro- and macroscale in the high-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Macromolecules 35, 664 (2002).
74.Li, Z.M., Arbatti, M.D., and Cheng, Z.Y.: Recrystallization study of high-energy electron-irradiated P(VDF-TrFE) 65/35 copolymer. Macromolecules 37, 79 (2004).
75.Li, Z.M., Li, S.Q., and Cheng, Z.Y.: Crystalline structure and transition behavior of recrystallized-irradiated P(VDF-TrFE) 65/35 copolymer. J. Appl. Phys. 97, 014102 (2005).
76.Jayasuriya, A.C., Schirokauer, A., and Scheinbeim, J.I.: Crystal-structure dependence of electroactive properties in differently prepared poly(vinylidene fluoride/hexafluoropropylene) copolymer films. J. Polym. Sci. B – Polym. Phys. 39, 2793 (2001).
77.Wegener, M., Kunstler, W., Richter, K., and Gerhard-Multhaupt, R.: Ferroelectric polarization in stretched piezo- and pyroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer films. J. Appl. Phys. 92, 7442 (2002).
78.Neese, B., Wang, Y., Chu, B., Ren, K., Liu, S., Zhang, Q.M., Huang, C., and West, J.: Piezoelectric responses in poly(vinylidene fluoride/hexafluoropropylene) copolymers. Appl. Phys. Lett. 90, 242917 (2007).
79.Li, Z.M., Wang, Y.H., and Cheng, Z.Y.: Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 88, 062904 (2006).
80.Klein, R.J., Xia, F., Zhang, Q.M., and Bauer, F.: Influence of composition on relaxor ferroelectric and electromechanical properties of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene). J. Appl. Phys. 97, 094105 (2005).
81.Xu, T.B., Cheng, Z.Y., and Zhang, Q.M.: High-performance micromachined unimorph actuators based on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer. Appl. Phys. Lett. 80, 1082 (2002).
82.Xia, F., Tadigadapa, S., and Zhang, Q.M.: Electroactive polymer based microfluidic pump. Sens. Actuators a – Phys. 125, 346 (2006).
83.Choi, S.T., Lee, J.Y., Kwon, J.O., Lee, S., and Kim, W.: Varifocal liquid-filled microlens operated by an electroactive polymer actuator. Opt. Lett. 36, 1920 (2011).
84.Choi, S.T., Kwon, J.O., and Bauer, F.: Multi layered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique. Sens. Actuators a – Phys. 203, 282 (2013).
85.Su, J., Harrison, J., St Clair, T., Harrison, J.S., and St Clair, T.L.: Polymeric Piezoelectric Material (Nasa Us Nat Aero & Space Admin; Nasa Us Nat Aero&Space Admin) WO200130875-A.
86.Su, J., Harrison, J., St Clair, T., Harrison, J.S., and St Clair, T.L.: Electromechanical Response Providing Device, has Active Web to Exhibit Electrostriction by Rotation of Polar Graft Moieties within Polymeric Web (Nasa Us Nat Aero & Space Admin; Nasa Us Nat Aero&Space Admin) WO200131172-A.
87.Levard, T., Diglio, P.J., Lu, S.-G., Rahn, C.D., and Zhang, Q.M.: Core-free rolled actuators for Braille displays using P(VDF–TrFE–CFE). Smart Mater. Struct. 21, 012001 (2012).
88.Huang, C. and Zhang, Q.M.: Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501 (2004).
89.Zhang, S.H., Zhang, N.Y., Huang, C., Ren, K.L., and Zhang, Q.M.: Microstructure and electromechanical properties of carbon nanotube/poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) composites. Adv. Mater. 17, 1897 (2005).
90.Javadi, A., Xiao, Y., Xu, W., and Gong, S.: Chemically modified graphene/P(VDF-TrFE-CFE) electroactive polymer nanocomposites with superior electromechanical performance. J. Mater. Chem. 22, 830 (2012).
91.Pelrine, R., Kornbluh, R., Pei, Q.B., and Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836 (2000).
92.Zhenyl, M., Scheinbeim, J.I., Lee, J.W., and Newman, B.A.: High-field electrostrictive response of polymers. J. Polym. Sci. B – Polym. Phys. 32, 2721 (1994).
93.Kofod, G., Sommer-Larsen, P., Kronbluh, R., and Pelrine, R.: Actuation responsee of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787 (2003).
94.Li, Z.M. and Cheng, Z.Y.: Partially ordered region—a new mechanism for electromechanical response of EAPs. In Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices. Proceedings of SPIE 5759, 252 (2005).
95.Zhao, X. and Suo, Z.: Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91, 061921 (2007).
96.Kofod, G., Wirges, W., Paajanen, M., and Bauer, S.: Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 90, 081916 (2007).
97.Zhang, Q.M., Li, H.F., Poh, M., Xia, F., Cheng, Z.Y., Xu, H.S., and Huang, C.: An all-organic composite actuator material with a high dielectric constant. Nature 419, 284 (2002).
98.Zhu, L. and Wang, Q.: Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937 (2012).
99.Wu, S., Shao, M., Burlingame, Q., Chen, X., Lin, M., Xiao, K., and Zhang, Q.M.: A high-K ferroelectric relaxor terpolymer as a gate dielectric for organic thin film transistors. Appl. Phys. Lett. 102, 013301 (2013).
100.Zhou, X., Zhao, X., Suo, Z., Zou, C., Runt, J., Liu, S., Zhang, S., and Zhang, Q.M.: Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl. Phys. Lett. 94, 162901 (2009).
101.Bassett, D.C.: Developments in Crystalline Polymers—1 (Applied Science Publishers, London, 1982).
102.Wu, S., Lin, M., Lu, S.G., Zhu, L., and Zhang, Q.M.: Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Appl. Phys. Lett. 99, 132901 (2011).
103.Tanaka, T., Kozako, M., Fuse, N., and Ohki, Y.: Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005).
104.Lewis, T.J.: Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739 (2004).
105.Rao, Y. and Wong, C.P.: Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92, 2228 (2004).
106.Kim, P., Doss, N.M., Tillotson, J.P., Hotchkiss, P.J., Pan, M.-J., Marder, S.R., Li, J., Calame, J.P., and Perry, J.W.: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581 (2009).
107.Kim, P., Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., and Perry, J.W.: Phosphonic acid-modiried barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19, 1001 (2007).
108.Zhou, T., Zha, J.-W., Cui, R.-Y., Fan, B.-H., Yuan, J.-K., and Dang, Z.-M.: Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 3, 2184 (2011).
109.Liu, S., Zhai, J., Wang, J., Xue, S., and Zhang, W.: Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6, 1533 (2014).
110.Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).
111.Song, Y., Shen, Y., Liu, H., Lin, Y., Li, M., and Nan, C.-W.: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 22, 16491 (2012).
112.Tang, H., Lin, Y., and Sodano, H.A.: Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 2, 469 (2012).
113.Wang, Y.U. and Tan, D.Q.: Computational study of filler microstructure and effective property relations in dielectric composites. J. Appl. Phys. 109, 104102 (2011).
114.Wang, Y.U., Tan, D.Q., and Krahn, J.: Computational study of dielectric composites with core–shell filler particles. J. Appl. Phys. 110, 044103 (2011).
115.Tomer, V. and Randall, C.A.: High field dielectric properties of anisotropic polymer–ceramic composites. J. Appl. Phys. 104, 074106 (2008).
116.Boggs, S.: Analytical approach to breakdown under impulse conditions. IEEE Trans. Dielectr. Electr. Insul. 11, 90 (2004).
117.Vogelsang, R., Farr, T., and Frohlich, K.: The effect of barriers on electrical tree propagation in composite insulation materials. IEEE Trans. Dielectr. Electr. Insul. 13, 373 (2006).
118.Lebedev, S.M., Gefle, O.S., and Pokholkov, Y.P.: The barrier effect in dielectrics: the role of interfaces in the breakdown of inhomogeneous dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 537 (2005).
119.Li, Q., Han, K., Gadinski, M.R., Zhang, G., and Wang, Q.: High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244 (2014).
120.Li, W., Meng, Q., Zheng, Y., Zhang, Z., Xia, W., and Xu, Z.: Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96, 192905 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 18
Total number of PDF views: 123 *
Loading metrics...

Abstract views

Total abstract views: 657 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th August 2018. This data will be updated every 24 hours.