Skip to main content

Ferromagnetic oxide heterostructures on silicon

  • Srinivasa Rao Singamaneni (a1) (a2) (a3), J.T. Prater (a1) (a2), Fan Wu (a2) (a4) and J. Narayan (a2)
  • Please note a correction has been issued for this article.

Heterostructures consisting of two ferromagnetic oxides La0.7Ca0.3MnO3 (LCMO) and SrRuO3 (SRO) were epitaxially grown by pulsed laser deposition onto a silicon (Si) substrate buffered by SrTiO3 (STO)/MgO/TiN. The x-ray scans and electron-diffraction patterns reveal the epitaxial nature of all five layers. From transmission electron microscopy, the thicknesses of the LCMO and SRO layers were estimated to be ~100 and ~200 nm, respectively. The magnetic properties of individual SRO and LCMO layers are in good agreement with the previous studies reported for those individual layers deposited on lattice-matched substrates, such as STO. The LCMO/SRO heterostructures showed enhanced switching field (from 6008 to 7600 Oe), which may originate from the bulk part of the heterostructure. The ability to grow these multifunctional structures on Si provides a route for wafer scale integration with Si, in contrast to oxide substrates that are not suitable for CMOS integration for microelectronics and spintronics applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ferromagnetic oxide heterostructures on silicon
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ferromagnetic oxide heterostructures on silicon
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ferromagnetic oxide heterostructures on silicon
      Available formats
Corresponding author
Address all correspondence to S.R. Singamaneni at
Hide All
1. Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., and Tokura, Y.: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012).
2. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., and Triscone, J-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
3. Habermeier, H-U.: Thin films of perovskitetype complex oxides. Mater. Today 10, 34 (2007).
4. Ramirez, A.P.: Colossal magnetoresistance. J. Phys. Condens. Mater. 9, 8171 (1997).
5. Salamon, M.B. and Jaime, M.: The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583 (2001).
6. Gan, Q., Rao, R.A., Eom, C.B., Garrett, J.L., and Lee, M.: Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 72, 978 (1998).
7. Ke, X., Rzchowski, M.S., Belenky, L.J., and Eom, C.B.: Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3/SrRuO3 bilayers. Appl. Phys. Lett. 84, 5458 (2004).
8. Ziese, M., Bern, F., and Vrejoiu, I.: Exchange bias in manganite/SrRuO3 superlattices. J. Appl. Phys. 113, 063911 (2013).
9. Solignac, A., Guerrero, R., Gogol, P., Maroutian, T., Ott, F., Largeau, L., Lecoeur, Ph, and Pannetier-Lecoeur, M.: Dual antiferromagnetic coupling at La0.67Sr0.33MnO3/SrRuO3 interfaces. Phys. Rev. Lett. 109, 027201 (2012).
10. Singamaneni, S.R., Fan, W., Prater, J.T., and Narayan, J.: Complete vertical M-H loop shift in La0.7Sr0.3MnO3/SrRuO3 thin film heterostructures. J. Appl. Phys. 117, 17B711 (2015).
11. Singamaneni, S.R., Prater, J.T., and Narayan, J.: Magnetic exchange coupling in bilayers of two epitaxial ferromagnetic oxides. Curr. Opin. Solid State Mater. Sci. 19, 301 (2015).
12. Narayan, J.: Recent progress in thin film epitaxy across the misfit scale. Acta Mater. 61, 2703 (2013).
13. Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).
14. Schmidbauer, M., Kwasniewski, A., and Schwarzkopf, J.: High-precision absolute lattice parameter determination of SrTiO3, DyScO3 and NdGaO3 single crystals. Acta Crystallogr. B 68, 8 (2012).
15. Lu, C.J., Wang, Z.L., Kwon, C., and Jia, Q.X.: Microstructure of epitaxial La0.7Ca0.3MnO3 thin films grown on LaAlO3 and SrTiO3 . J. Appl. Phys. 88, 4032 (2000).
16. Koster, G., Klein, L., Siemons, W., Rijnders, G., Dodge, J.S., Eom, C.B., Blank, D.H.A., and Beasley, M.R.: Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253 (2012).
17. Baek, S-H. and Eom, C-B.: Epitaxial integration of perovskite-based multifunctional oxides on silicon. Acta Mater. 61, 2734 (2013).
18. Giencke, J.E., Folkman, C.M., Baek, S-H., and Eom, C-B.: Tailoring the domain structure of epitaxial BiFeO3 thin films. Curr. Opin. Solid State Mater. Sci. 18, 39 (2014).
19. Singamaneni, S.R., Prater, J.T., and Narayan, J.: Enhanced Coercivity in BiFeO3/SrRuO3 heterostructures. MRS Adv. 1, 597 (2016).
20. Ning, X., Wang, Z., and Zhang, Z.: Exchange bias effect and large coercivity enhancement in SrRuO3/NiO multilayer. J. Phys. D: Appl. Phys. 46, 452001 (2013).
21. Chakhalian, J., Freeland, J.W., Millis, A.J., Panagopoulos, C., and Rondinelli, J.M.: Emergent properties in plane view: Strong correlations at oxide interfaces. Rev. Mod. Phys. 86, 1189 (2014).
22. Chu, Y-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S-J., He, Q., Balke, N., Yang, C-H., Lee, D., Hu, W., Zhan, Q., Yang, P-L., Fraile-Rodríguez, A., Scholl, A., Wang, S.X., and Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).
23. Wu, S.M., Cybart, S.A., Yi, D., Parker, J.M., Ramesh, R., and Dynes, R.C.: Full electric control of exchange bias. Phys. Rev. Lett. 110, 067202 (2013).
24. Rao, S.S., Prater, J.T., Wu, F., Shelton, C.T., Maria, J-P., and Narayan, J.: Interface magnetism in epitaxial BiFeO3-La0.7Sr0.3MnO3 heterostructures integrated on Si(100). Nano Lett. 13, 5814 (2013).
25. Chakhalian, J., Freeland, J.W., Habermeier, H-U., Cristiani, G., Khaliullin, G., van Veenendaal, M., and Keimer, B.: Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114 (2007).
26. Chakhalian, J., Freeland, J.W., Srajer, G., Strempfer, J., Khaliullin, G., Cezar, J.C., Charlton, T., Dalgliesh, R., Bernhard, C., Cristiani, G., Habermeier, H-U., and Keimer, B.: Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2, 244 (2006).
27. Yu, P., Lee, J-S., Okamoto, S., Rossell, M.D., Huijben, M., Yang, C-H., He, Q., Zhang, J.X., Yang, S.Y., Lee, M.J., Ramasse, Q.M., Erni, R., Chu, Y-H., Arena, D.A., Kao, C-C., Martin, L.W., and Ramesh, R.: Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010).
28. Gibert, M., Zubko, P., Scherwitzl, R., Íñiguez, J., and Triscone, J-M.: Exchange bias in LaNiO3–LaMnO3 superlattices. Nat. Mater. 11, 195 (2012).
29. Dong, S., Yu, R., Yunoki, S., Alvarez, G., Liu, J-M., and Dagotto, E.: Magnetism, conductivity, and orbital order in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. B 78, 201102(R) (2008).
30. Takahashia, K.S., Kawasaki, M., and Tokura, Y.: Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3 . Appl. Phys. Lett. 79, 1324 (2001).
31. Freeland, J.W., Kavich, J.J., Gray, K.E., Ozyuzer, L., Zheng, H., Mitchell, J.F., Warusawithana, M.P., Ryan, P., Zhai, X., Kodama, R.H., and Eckstein, J.N.: Suppressed magnetization at the surfaces and interfaces of ferromagnetic metallic manganites. J. Phys. Condens. Mater. 19, 315210 (2007).
32. Shapoval, O., Huhn, S., Verbeeck, J., Jungbauer, M., Belenchuk, A., and Moshnyaga, V.: Interface-controlled magnetism and transport of ultrathin manganite films. J. Appl. Phys. 113, 17C711 (2013).
33. Chopdekar, R.V., Arenholz, E., and Suzuk, Y.: Orientation and thickness dependence of magnetization at the interfaces of highly spin-polarized manganite thin films. Phys. Rev. B 79, 104417 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 103
Total number of PDF views: 353 *
Loading metrics...

Abstract views

Total abstract views: 595 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2018. This data will be updated every 24 hours.