Skip to main content

Functional semiconductors targeting copolymer architectures and hybrid nanostructures

  • Joannis K. Kallitsis (a1) (a2), Charalampos Anastasopoulos (a1) and Aikaterini K. Andreopoulou (a1) (a2)

The introduction of functional units onto semiconducting polymers either as side chains or at the α- and ω-ends of polymeric chains is the method of choice in order to impose additional functions to the final semiconducting materials when aiming specific applications. Moreover, the functionalization approach provides a route to further complex macromolecular architectures as well as the generation of hybrid materials through the covalent attachment of the semiconductor to carbon nanostructures or to inorganic nanoparticles. Via this prospective an outline over functionalized and hybrid semiconducting polymers is provided along with possible paths of future research toward functional and hybrid semiconductors.

Corresponding author
Address all correspondence to Joannis K. Kallitsis
Hide All
1.Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem., Int. Ed. 40, 25912611 (2001).
2.Carle, J.E., Helgesen, M., Madsen, M.V., Bundgaard, E., and Krebs, F.C.: Upscaling from single cells to modules–fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. J. Mater. Chem. C 2, 12901297 (2014).
3.He, Z., Zhong, C., Su, S., Xu, M., Wu, H., and Cao, Y.: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591595 (2012).
4.Boudreault, P.-L.T., Najari, A., and Leclerc, M.: Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 23, 456469 (2011).
5.Hong, S.Y., Kertesz, M., Lee, Y.S., and Kim, O.K.: Geometrical and electronic structures of a benzimidazobenzophenanthroline-type ladder polymer (BBL). Macromolecules 25, 54245429 (1992).
6.Babel, A. and Jenekhe, S.A.: High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 1365613657 (2003).
7.Alam, M.M. and Jenekhe, S.A.: Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem. Mater. 16, 46474656 (2004).
8.Jeffries-EL, M. and McCullough, R.D.: ‘Regioregular Polythiophenes’, Chapter 9 in Skotheim, T.A. and Reynolds, J. (eds), Handbook of Conducting Polymers, 3rd ed. (CRC Press, LLC, Boca Raton, FL, 2007), pp. 149.
9.Perepichka, I.F. and Perepichka, D.F. (eds): Handbook of Thiophene Based Materials: Applications in Organic Electronics and Photonics, Volume One: Synthesis and Theory (John Wiley & Sons, Chichester, 2009).
10.McCullough, R.D.: The chemistry of conducting polythiophenes. Adv. Mater. 10, 93116 (1998).
11.Loewe, R.S., Ewbank, P.C., Liu, J., Zhai, L., and McCullough, R.D.: Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the grim method: investigation of the reaction and the origin of regioselectivity. Macromolecules 34, 43244333 (2001).
12.Miyakoshi, R., Yokoyama, A., and Yokozawa, T.: Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 127, 1754217547 (2005).
13.Beryozkina, T., Senkovskyy, V., Kaul, E., and Kiriy, A.: Kumada catalyst-transfer polycondensation of thiophene-based oligomers: robustness of a chain-growth mechanism. Macromolecules 41, 78177823 (2008).
14.Senkovskyy, V., Sommer, M., Tkachov, R., Komber, H., Huck, W.T.S., and Kiriy, A.: Convenient route to initiate kumada catalyst-transfer polycondensation using Ni(dppe)Cl2 or Ni(dppp)Cl2 and sterically hindered grignard compounds. Macromolecules 43, 1015710161 (2010).
15.Kiriy, A., Senkovskyy, V., and Sommer, M.: Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol. Rapid Commun. 32, 15031517 (2011).
16.Liu, J.S. and McCullough, R.D.: End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules 35, 98829889 (2002).
17.Li, Y., Vamvounis, G., Yu, J., and Holdcroft, S.: A novel and versatile methodology for functionalization of conjugated polymers. Transformation of poly(3-bromo-4-hexylthiophene) via palladium-catalyzed coupling chemistry. Macromolecules 34, 31303132 (2001).
18.Stefan, M.C., Bhatt, M.P., Sista, P., and Magurudeniya, H.D.: Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 3, 16931701 (2012).
19.Economopoulos, S.P., Chochos, C.L., Gregoriou, V.G., Kallitsis, J.K., Barrau, S., and Hadziioannou, G.: Novel brush-type copolymers bearing thiophene backbone and side chain quinoline blocks. Synthesis and their use as a compatibilizer in thiophene–quinoline polymer blends. Macromolecules 40, 921927 (2007).
20.Gholamkhass, B. and Holdcroft, S.: Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 22, 53715376 (2010).
21.Goubard, F. and Wantz, G.: Ternary blends for polymer bulk heterojunction solar cells. Polym. Int. 63, 13621367 (2014).
22.Dang, M.T., Hirsch, L., Wantz, G., and Wuest, J.D.: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the Benchmark poly(3-hexylthiophene):[6,6]-Phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 37343765 (2013).
23.Yuan, K., Chen, L., and Chen, Y.: Nanostructuring compatibilizers of block copolymers for organic photovoltaics. Polym. Int. 63, 593606 (2014).
24.Topham, P.D., Parnell, A.J., and Hiorns, R.C.: Block copolymer strategies for solar cell technology. J. Polym. Sci. B: Polym. Phys. 49, 11311156 (2011).
25.Wantz, G., Derue, L., Dautel, O., Rivaton, A., Hudhomme, P., and Dagron-Lartigau, C.: Stabilizing polymer-based bulk heterojunction solar cells via crosslinking. Polym. Int. 63, 13461361 (2014).
26.Kim, B.J., Miyamoto, Y., Ma, B., and Frechet, J.M.J.: Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19, 22732281 (2009).
27.Kim, H.J., Han, A-R., Cho, C.-H., Kang, H., Cho, H.-H., Lee, M.Y., Fréchet, J.M.J., Oh, J.H., and Kim, B.J.: Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers. Chem. Mater. 24, 215221 (2012).
28.Khiev, S., Derue, L., Ayenew, G., Medlej, H., Brown, R., Rubatat, L., Hiorns, R.C., Wantz, G., and , C.Dagron-Lartigau: enhanced thermal stability of organic solar cells by using photolinkable end-capped polythiophenes. Polym. Chem. 4, 41454150 (2013).
29.Jeffries-El, M., Sauve, G., and McCullough, R.D.: Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 38, 1034610352 (2005).
30.Yassara, A., Miozzoa, L., Girondaa, R., and Horowitz, G.: Rod–coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 38, 791844 (2013).
31.Urien, M., Erothu, H., Cloutet, E., Hiorns, R.C., Vignau, L., and Cramail, H.: Poly(3-hexylthiophene) based block copolymers prepared by “click” chemistry. Macromolecules 41, 70337040 (2008).
32.Tao, Y., McCulloch, B., Kim, S., and Segalman, R.A.: The relationship between morphology and performance of donor–acceptor rod–coil block copolymer solar cells. Soft Matter 5, 42194230 (2009).
33.Craley, C.R., Zhang, R., Kowalewski, T., McCullough, R.D., and Stefan, M.C.: Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer. Macromol. Rapid Commun. 30, 1116 (2009).
34.Mougnier, S.-J., Brochon, C., Cloutet, E., Fleury, G., Cramail, H., and Hadziioannou, G.: Design of well-defi ned monofunctionalized poly(3-hexylthiophene)s: toward the synthesis of semiconducting graft copolymers. Macromol. Rapid Commun. 33, 703709 (2012).
35.Li, Z., Ono, R.J., Wu, Z.-Q., and Bielawski, C.W.: Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid). Chem. Commun. 47, 197199 (2011).
36.Erothu, H., Kolomanska, J., Johnston, P., Schumann, S., Deribew, D., Toolan, D.T.W., Gregori, A., Dagron-Lartigau, C., Portale, G., Bras, W., Arnold, T., Distler, A., Hiorns, R.C., Mokarian-Tabari, P., Collins, T.W., Howse, J.R., and Topham, P.D.: Synthesis, thermal processing, and thin film morphology of poly(3-hexylthiophene)–poly(styrenesulfonate) block copolymers. Macromolecules 48, 21072117 (2015).
37.Lohwasser, R.H. and Thelakkat, M.: Synthesis of amphiphilic rod–coil P3HT-b-P4VP carrying a long conjugated block using NMRP and click chemistry. Macromolecules 45, 30703077 (2012).
38.Erothu, H., Sohdi, A.A., Kumar, A.C., Sutherland, A.J., Dagron-Lartigau, C., Allal, A., Hiorns, R.C., and Topham, P.D.: Facile synthesis of poly(3-hexylthiophene)-blockpoly(ethylene oxide) copolymers via Steglich esterification. Polym. Chem. 4, 36523655 (2013).
39.Jeffries-El, M., Sauvé, G., and McCullough, R.D.: In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the grignard metathesis polymerization method. Adv. Mater. 16, 10171019 (2004).
40.Kakogianni, S., Kourkouli, S.N., Andreopoulou, A.K., and Kallitsis, J.K.: A versatile approach for creating hybrid semiconducting polymer–fullerene architectures for organic electronics. J. Mater. Chem. A 2, 81108117 (2014).
41.Chen, J. and Cao, Y.: Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 42, 17091718 (2009).
42.Cheng, Y.J., Yang, S.H., and Hsu, C.S.: Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 58685923 (2009).
43.Yoon, M.-H., Kim, C., Facchetti, A., and Marks, T.J.: Gate dielectric chemical structure–organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 128, 1285112869 (2006).
44.Crouch, D.J., Skabara, P.J., Lohr, J.E., McDouall, J.J.W., Heeney, M., McCulloch, I., Sparrowe, D., Shkunov, M., Coles, S.J., Horton, P.N., and Hursthouse, M.B.: Thiophene and selenophene copolymers incorporating fluorinated phenylene units in the main chain: synthesis, characterization, and application in organic field-effect transistors. Chem. Mater. 17, 65676578 (2005).
45.Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., and Yu, L.: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135E138 (2010).
46.Sonar, P., Chang, J., Shi, Z., Wu, J., and Li, J.: Thiophene–tetrafluorophenyl–thiophene: a promising building block for ambipolar organic field effect transistors. J. Mater. Chem. C 3, 20802085 (2015).
47.Lobez, J.M., Andrew, T.L., Buloviand, V., and Swager, T.M.: Improving the performance of P3HT-fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design. ACS Nano 6, 30443056 (2012).
48.Giannopoulos, P., Nikolakopoulou, A., Andreopoulou, A.K., Sygellou, L., Kallitsis, J.K., and Lianos, P.: An alternative methodology for anchoring organic sensitizers onto TiO2 semiconductors for photoelectrochemical applications. J. Mater. Chem. A 2, 2074820759 (2014).
49.Giannopoulos, P., Anastasopoulos, C., Andreopoulou, A.K., and Kallitsis, J.K.: Low-band gap electron-donor oligomeric sensitizers directly connected onto TiO2 nanoparticles for dye sensitized solar cells applications. J. Surf. Interface Mater. 2, 274279 (2014).
50.Liu, J., Tanaka, T., Sivula, K., Alivisatos, A.P., and Frechet, J.M.J.: Employing end-functional polythiophene to control the morphology of nanocrystal–polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 65506551 (2004).
51.Rath, T. and Trimme, G.: In situ syntheses of semiconducting nanoparticles in conjugated polymer matrices and their application in photovoltaics. Hybrid Mater. 1, 1536 (2013).
52.Freitas, J.N., Gonçalves, A.S., and Nogueiras, A.F.: A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6, 63716397 (2014).
53.Guo, Z.-S., Zhao, L., Pei, J., Zhou, Z.-L., Gibson, G., Brug, J., Lam, S., and Mao, S.S.: CdSe/ZnS nanoparticle composites with amine-functionalized polyfluorene derivatives for polymeric light-emitting diodes: synthesis, photophysical properties, and the electroluminescent performance. Macromolecules 43, 18601866 (2010).
54.Skaff, H., Sill, K., and Emrick, T.: Quantum dots tailored with poly(para-phenylene vinylene). J. Am. Chem. Soc. 126, 1132211325 (2004). Roo, T., Haase, J., Keller, J., Hinz, C., Schmid, M., Seletskiy, D.V., Cölfen, H., Leitenstorfer, A., and Mecking, S.: A direct approach to organic/inorganic semiconductor hybrid particles via functionalized polyfluorene ligands. Adv. Funct. Mater. 24, 27142719 (2014).
56.Monnaie, F., Brullot, W., Verbiest, T., De Winter, J., Gerbaux, P., Smeets, A., and Koeckelberghs, G.: Synthesis of end-group functionalized P3HT: general protocol for P3HT/nanoparticle hybrids. Macromolecules 46, 85008508 (2013).
57.Bousqueta, A., Awada, H., Hiorns, R.C., Dagron-Lartigau, C., and Billona, L.: Conjugated-polymer grafting on inorganic and organicsubstrates: a new trend in organic electronic materials. Prog. Polym. Sci. 39, 18471877 (2014).
58.Martinez, L., Higuchi, S., MacLachlan, A.J., Stavrinadis, A., Miller, N.C., Diedenhofen, S.L., Bernechea, M., Sweetnam, S., Nelson, J., Haque, S.A., Tajimaef, K., and Konstantatos, G.: Improved electronic coupling in hybrid organic–inorganic nanocomposites employing thiol-functionalized P3HT and bismuth sulfide nanocrystals. Nanoscale 6, 1001810026 (2014).
59.Lindner, S.M. and Thelakkat, M.: Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers. Macromolecules 37, 88328835 (2004).
60.Lindner, S.M., Huttner, S., Chiche, A., Thelakkat, M., and Krausch, G.: Charge separation at self-assembled nanostructured bulk interface in block copolymers. Angew. Chem., Int. Ed. 45, 33643368 (2006).
61.Sommer, M., Lindner, S.M., and Thelakkat, M.: Microphase-separated donor–acceptor diblock copolymers: influence of homo energy levels and morphology on polymer solar cells. Adv. Funct. Mater. 17, 14931500 (2007).
62.Sommer, M., Lang, A.S., and Thelakkat, M.: Crystalline–crystalline donor–acceptor block copolymers. Angew. Chem., Int. Ed. 47, 79017904 (2008).
63.Zhang, Q.L., Cirpan, A., Russell, T.P., and Emrick, T.: Donor–acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules 42, 10791082 (2009).
64.Rajaram, S., Armstrong, P.B., Kim, B.J., and Frechet, J.M.J.: Effect of addition of a diblock copolymer on blend morphology and performance of poly(3-hexylthiophene):perylene diimide solar cells. Chem. Mater. 21, 17751777 (2009).
65.Mansky, P., Liu, Y., Huang, E., Russell, T.P., and Hawker, C.: Controlling polymer-surface interactions with random copolymer brushes. Science 275, 14581460 (1997).
66.Zhao, B. and Brittain, W.: Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677710 (2000).
67.Campidelli, S., Sooambar, C., Diz, E.L., Ehli, C., Guldi, D.M., and Prato, M.: Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 128, 1254412552 (2006).
68.Cioffi, C., Campidelli, S., Sooambar, C., Marcaccio, M., Marcolongo, G., Meneghetti, M., Paolucci, D., Paolucci, F., Ehli, C., Rahman, G.M.A., Sgobba, V., Guldi, D.M., and Prato, M.: Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J. Am. Chem. Soc. 129, 39383945 (2007).
69.Karousis, N., Tagmatarchis, N., and Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 53665397 (2010).
70.Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 11051136 (2006).
71.Stefopoulos, A.A., Chochos, C.L., Prato, M., Pistolis, G., Papagelis, K., Petraki, F., Kennou, S., and Kallitsis, J.K.: Novel hybrid materials consisting of regioregular poly(3-octylthiophene)s covalently attached to single-wall carbon nanotubes. Chem. Eur. J. 14, 87158724 (2008).
72.Chochos, C.L., Stefopoulos, A.A., Campidelli, S., Prato, M., Gregoriou, V.G., and Kallitsis, J.K.: Immobilization of oligoquinoline chains on single-wall carbon nanotubes and their optical behavior. Macromolecules 41, 18251830 (2008).
73.Stefopoulos, A.A., Kourkouli, S.N., Economopoulos, S., Ravani, F., Andreopoulou, A., Papagelis, K., Siokou, A., and Kallitsis, J.K.: Polymer and hybrid electron accepting materials based on a semiconducting perfluorophenylquinoline. Macromolecules 43, 48274828 (2010).
74.Kourkouli, S.N., Siokou, A., Stefopoulos, A.A., Ravani, F., Plocke, T., Müller, M., Maultzsch, J., Thomsen, C., Papagelis, K., and Kallitsis, J.K.: Electronic properties of semiconducting polymer-functionalized single wall carbon nanotubes. Macromolecules 46, 25902598 (2013). Boer, B., Stalmach, U., van Hutten, P.F., Melzer, C., Krasnikov, V.V., and Hadziioannou, G.: Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer 42, 90979109 (2001).
76.van der Veen, M.H., de Boer, B., Stalmach, U., van de Wetering, K.I., and Hadziioannou, G.: Donor–acceptor diblock copolymers based on PPV and C60: synthesis, thermal properties, and morphology. Macromolecules 37, 36733684 (2004).
77.Barrau, S., Heiser, T., Richard, F., Brochon, C., Ngov, C., van de Wetering, K., Hadziioannou, G., Anokhin, D.V., and Ivanov, D.: A. Self-assembling of novel fullerene-grafted donor–acceptor rod–coil block copolymers. Macromolecules 41, 27012710 (2008).
78.Sivula, K., Ball, Z.T., Watanabe, N., and Frechet, J.M.J.: Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv. Mater. 18, 206210 (2006).
79.Richard, F., Brochon, C., Leclerc, N., Eckhardt, D., Heiser, T., and Hadziioannou, G.: Design of a linear poly(3-hexylthiophene)/fullerene-based donor–acceptor rod–coil block copolymer. Macromol. Rapid. Commun. 29, 885891 (2008).
80.Li, M., Xu, P., Yang, J., and Yang, S.: Donor-π-acceptor double-cable polythiophenes bearing fullerene pendant with tunable donor/acceptor ratio: a facile postpolymerization. J. Mater. Chem. 20, 39533960 (2010).
81.Dante, M., Yang, C., Walker, B., Wudl, F., and Nguyen, T.-Q.: Self-assembly and charge-transport properties of a polythiophene–fullerene triblock copolymer. Adv. Mater. 22, 18351839 (2010).
82.Hiorns, R.C., Iratçabal, P., Bégué, D., Khoukh, A., De Bettignies, R., Leroy, J., Firon, M., Sentein, C., Martinez, H., Preud'homme, H., and Dagron-Lartigau, C.: Alternatively linking fullerene and conjugated polymers. J. Polym. Sci. A: Polym. Chem. 47, 23042317 (2009).
83.Lee, J.U., Jung, J.W., Emrick, T., Russell, T.P., and Jo, W.H.: Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J. Mater. Chem. 20, 32873294 (2010).
84.Gholamkhass, B., Peckham, T.J., and Holdcroft, S.: Poly(3-hexylthiophene) bearing pendant fullerenes: aggregation vs. self-organization. Polym. Chem. 1, 708719 (2010).
85.Lee, J.U., Cirpan, A., Emrick, T., Russell, T.P., and Jo, W.H.: Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. J. Mater. Chem. 19, 14831489 (2009).
86.Yang, C., Lee, J.K., Heeger, A.J., and Wudl, F.: Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 19, 54165423 (2009).
87.Bicciocchi, E., Chen, M., Rizzardo, E., and Ghiggino, K.P.: Synthesis of a rod–coil block copolymer incorporating PCBM. Polym. Chem. 4, 5356 (2013).
88.Chen, M., Li, M., Wang, H., Qu, S., Zhao, X., Xie, L., and Yang, S.: Side-chain substitution of poly(3-hexylthiophene) (P3HT) by PCBM via postpolymerization: an intramolecular hybrid of donor and acceptor. Polym. Chem. 4, 550557 (2013).
89.Sary, N., Richard, F., Brochon, C., Leclerc, N., Lévêque, P., Audinot, J.-N., Berson, S., Heiser, T., Hadziioannou, G., and Mezzenga, R.: A new supramolecular route for using rod–coil block copolymers in photovoltaic applications. Adv. Mater. 22, 763768 (2010).
90.Renaud, C., Mougnier, S.-J., Pavlopoulou, E., Brochon, C., Fleury, G., Deribew, D., Portale, G., Cloutet, E., Chambon, S., Vignau, L., and Hadziioannou, G.: Block copolymer as a nanostructuring agent for high efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24, 21962201 (2012).
91.Laiho, A., Ras, R.H.A., Valkama, S., Ruokolainen, J., Österbacka, R., and Ikkala, O.: Control of self-assembly by charge-transfer complexation between c60 fullerene and electron donating units of block copolymers. Macromolecules 39, 76487653 (2006).
92.Wang, M., Heeger, A.J., and Wudl, F.: Self-assembly of a fullerene poly(3-hexylthiophene) dyad. Small 7, 298301 (2011).
93.Kamkar, D.A., Wang, M., Wudl, F., and Thuc-Quyen, N.: Single nanowire OPV properties of a fullerene-capped P3HT dyad investigated using conductive and photoconductive AFM. ACS Nano 6, 11491157 (2012).
94.Wang, M. and Wudl, F.: Top-down meets bottom-up: organized donor–acceptor heterojunctions for organic solar cells. J. Mater. Chem. 22, 2429724314 (2012).
95.Yan, M., Cai, S.X., and Keana, J.F.W.: Photochemical and thermal reactions of C60 with N-succinimidyl 4-azido-2,3,5,6-tetrafluorobenzoate: a new method for functionalization of C60. J. Org. Chem. 59, 59515954 (1994).
96.Cases, M., Duran, M., Mestres, J., Martín, N., and Solà, M.: Mechanism of the addition reaction of alkyl azides to [60]fullerene and the subsequent N2 extrusion to form monoimino-[60]fullerenes. J. Org. Chem. 66, 433442 (2001).
97.Pastine, S.J., Okawa, D., Kessler, B., Rolandi, M., Llorente, M., Zettl, A., and Fréchet, J.M.J.: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 42384239 (2008).
98.Suggs, K., Reuven, D., and Wang, X.-Q.: Electronic properties of cycloaddition-functionalized graphene. J. Phys. Chem. C 115, 33133317 (2011).
99.Liu, L.-H. and Yan, M.: Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 43, 14341443 (2010).
100.Yameen, B., Puerckhauer, T., Ludwig, J., Ahmed, I., Altintas, O., Fruk, L., Colsmann, A., and Barner-Kowollik, C.: π-conjugated polymer–fullerene covalent hybrids via ambient conditions diels–alder ligation. Small 10, 30913098 (2014).
101.Hiorns, R.C., Cloutet, E., Ibarboure, E., Khoukh, A., Bejbouji, H., Vignau, L., and Cramail, H.: Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 43, 60336044 (2010).
102.Perrin, L., Legros, M., and Mercier, R.: Design of a series of polythiophenes containing C60 groups: synthesis and optical and electrochemical properties. Macromolecules 48, 323336 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 13
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 279 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th August 2018. This data will be updated every 24 hours.