Skip to main content

Ice-templated silicon foams with aligned lamellar channels

  • Fernando L. Reyes Tirado (a1), Jiaxing Huang (a1) and David C. Dunand (a1)

An aqueous suspension of 5 vol% silicon (Si) nanoparticles was directionally solidified at substrate temperatures between −10 and −25 °C, resulting in colonies of aligned pure ice dendrites separated by interdendritic Si particles packed walls. Channels are created by sublimation of the dendrites, and the surrounding Si walls are densified by sintering. The resulting Si foams exhibit a 76 ± 2% macroporosity, with the width of the ice-templated channels and the Si walls decreasing with solidification temperature, from 106 to 60 µm and from 34 to 17 µm, respectively. Si walls show high surface roughness from inverse templating of short secondary ice dendrite arms.

Corresponding author
Address all correspondence to David C. Dunand at
Hide All
1. Deville, S.: Freezing Colloids: Observations, Principles, Control, and Use (Springer International Publishing, Cham, 2017).
2. Liu, R., Xu, T., and an Wang, C.: A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int. 42, 2907 (2015).
3. Scotti, K.L., Northard, E.E., Plunk, A., Tappan, B.C., and Dunand, D.C.: Directional solidification of aqueous TiO2 suspensions under reduced gravity. Acta Mater. 124, 608 (2017).
4. Deville, S.: Freeze-casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 10, 155 (2008).
5. Jo, H., Kim, M.J., Choi, H., Sung, Y.-E., Choe, H., and Dunand, D.C.: Morphological study of directionally freeze-cast nickel foams. Metall. Mater. Trans. E 3, 46 (2016).
6. Sepúlveda, R., Plunk, A.A., and Dunand, D.C.: Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Mater. Lett. 142, 56 (2015).
7. Chino, Y., and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).
8. Plunk, A.A., and Dunand, D.C.: Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Mater. Lett. 191, 112 (2017).
9. Park, H., Choi, M., Choe, H., and Dunand, D.C.: Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Mater. Sci. Eng. A 679, 435 (2017).
10. Röthlisberger, A., Häberli, S., Spolenak, R., and Dunand, D.C.: Synthesis, structure and mechanical properties of ice-templated tungsten foams. J. Mater. Res. 31, 753 (2016).
11. Schoof, H., Bruns, L., Fischer, A., Heschel, I., and Rau, G.: Dendritic ice morphology in unidirectionally solidified collagen suspensions. J. Cryst. Growth 209, 122 (2000).
12. Deville, S.: Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials (Basel) 3, 1913 (2010).
13. Hu, H.L., Zeng, Y.P., Xia, Y.F., Yao, D.X., and Zuo, K.H.: High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. Mater. Lett. 133, 285 (2014).
14. Kim, D.S., and Kim, D.K.: Hierarchical structure of porous silicon nitride ceramics with aligned pore channels prepared by ice-templating and nitridation of silicon powder. Int. J. Appl. Ceram. Technol. 12, 921 (2015).
15. Ge, M., Fang, X., Rong, J., and Zhou, C.: Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24, 422001 (2013).
16. Yoo, J.-K., Kim, J., Lee, H., Choi, J., Choi, M.-J., Sim, D.M., Jung, Y.S., and Kang, K.: Porous silicon nanowires for lithium rechargeable batteries. Nanotechnology 24, 424008 (2013).
17. Glazer, M.P.B., Cho, J., Almer, J., Okasinski, J., Braun, P.V., and Dunand, D.C.: In operando strain measurement of bicontinuous silicon-coated nickel inverse opal anodes for Li-ion batteries. Adv. Energy Mater. 5, 1 (2015).
18. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).
19. Jang, H.D., Kim, H., Chang, H., Kim, J., Roh, K.M., Choi, J.-H., Cho, B.-G., Park, E., Kim, H., Luo, J., and Huang, J.: Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. Sci. Rep. 5, 9431 (2015).
20. Jang, H.D., Kim, H., Kil, D.S., and Chang, H.: A Novel recovery of silicon nanoparticles from a waste silicon sludge. J. Nanosci. Nanotechnol. 13, 2334 (2013).
21. Seuba, J., Deville, S., Guizard, C., and Stevenson, A.J.: Gas permeability of ice-templated, unidirectional porous ceramics. Sci. Technol. Adv. Mater. 17, 313 (2016).
22. Lebrun, J.M., Sassi, A., Pascal, C., and Missiaen, J.M.: Densification and microstructure evolution during sintering of silicon under controlled water vapor pressure. J. Eur. Ceram. Soc. 33, 2993 (2013).
23. Yin, L., Zhou, X., Yu, J., and Wang, H.: Preparation of high porous silicon nitride foams with ultra-thin walls and excellent mechanical performance for heat exchanger application by using a protein foaming method. Ceram. Int. 42, 1713 (2016).
24. Xia, Y., Zeng, Y.-P., and Jiang, D.: Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Mater. Des. 33, 98 (2012).
25. Shan, S.-Y., Yang, J.-F., Gao, J.-Q., Zhang, W.-H., Jin, Z.-H., Janssen, R., and Ohji, T.: Porous silicon nitride ceramics prepared by reduction-nitridation of silica. J. Am. Ceram. Soc. 88, 2594 (2005).
26. de Moraes, E.G., and Colombo, P.: Silicon nitride foams from emulsions. Mater. Lett. 128, 128 (2014).
27. Ollivier, M., Latu-Romain, L., and Latu-Romain, E.: Growth of a 3C-SiC layer by carburization of silicon nanopillars. Mater. Lett. 141, 263 (2015).
28. Naglieri, V., Bale, H.A., Gludovatz, B., Tomsia, A.P., and Ritchie, R.O.: On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Mater. 61, 6948 (2013).
29. Chen, Y., and Chung, D.D.L.: Silicon-aluminium network composites fabricated by liquid metal infiltration. J. Mater. Sci. 29, 6069 (1994).
30. Röthlisberger, A., Häberli, S., Galinski, H., Dunand, D.C., and Spolenak, R.: Ice-templated W-Cu composites with high anisotropy. arXiv:1708.06801 cond-mat. mtrl-sci. 1 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed