Skip to main content Accessibility help

Molecular design, synthesis, and characterization of conjugated polymers for interfacing electronic biomedical devices with living tissue

  • David C. Martin (a1)

Conjugated polymers are being considered for use at the interface between hard inorganic metallic and semiconducting electrodes and soft biological tissues. These organic materials have properties that are intermediate to these two extremes, and their chemistry, structure, and performance can be precisely manipulated over a large range. Examples of current interest included copolymers of poly(3,4-ethylene dioxythiophene) and poly(3,4-propylene dioxythiophene). This paper will review past efforts, recent activities, and future possibilities in this rapidly expanding area of materials research and technology.

Corresponding author
Address all correspondence to David C. Martin
Hide All
1.Wilson, B.S. and Dorman, M.F.: Cochlear implants: a remarkable past and a brilliant future. Hearing Res. 242, 321 (2008).
2.Weiland, J.D., Cho, A.K., and Humayun, M.S.: Retinal prostheses: current clinical results and future needs. Ophthalmology 118, 22272237 (2011).
3.Norlin, A., Pan, J., and Leygraf, C.: Electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications. J. Electrochem. Soc. 152, J110J116 (2005).
4.Gimsa, J., Habel, B., Schreiber, U., van Rienen, U., Strauss, U., and Gimsa, U.: Choosing electrodes for deep brain stimulation experiments—electrochemical considerations. J. Neurosci. Methods 142, 251265 (2005).
5.Drake, K.L., Wise, K.D., Farraye, J., Anderson, D.J., and BeMent, S.L.: Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35, 719732 (1988).
6.Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., and Aziz, T.Z.: Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623635 (2007).
7.Schlaepfer, T.E., Bewernick, B.H., Kayser, S., Hurlemann, R., and Coenen, V.A.: Deep brain stimulation of the human reward system for major depression—rationale, outcomes, and outlook. Neuropsychopmarmacology 39, 13031314 (2014).
8.Kung, T.A., Langhals, N.B., Martin, D.C., Cederna, P.S., and Urbanchek, M.G.: Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Plastic Reconstruct. Surg. 133, 13801394 (2014).
9.Kuiken, T.A.: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245 (2004).
10.Birmingham, K., Gardinaru, V., Anikeeva, P., Grill, W.M., Pikov, V., McLaughlin, B., Pasricha, P., Weber, D., Ludwig, K.A., and Famm, K.: Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13, 399400 (2014).
11.Merrill, D.R., Bikson, M., and Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171198 (2005).
12.Chen, J.K., Wise, K.D., Hetke, J.F., and Bledsoe, S.C.: A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44, 760769 (1997).
13.Meyers, M.A., Chen, P.-Y., Lin, A.Y.-M., and Seki, Y.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1206 (2008).
14.Subbaroyan, J., Martin, D.C., and Kipke, D.R.: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2, 103113 (2005).
15.Lang, U., Naujoks, N., and Dual, J.: Mechanical characterization of PEDOT: PSS thin films. Synth. Met. 159, 473479 (2009).
16.Lang, U. and Dual, J.: Mechanical properties of the intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT/PSS). Key Eng. Mater. 345–346, 11891192 (2007).
17.Yang, J. and Martin, D.C.: Impedance spectroscopy and nanoindentation of conducting pedot coatings on neural prosthetic devices. J. Mater. Res. 21, 11241132 (2006).
18.Aouada, F.A., Guilherme, M.R., Campese, G.M., Giroto, E.M., Rubira, A.F., and Muniz, E.C.: Electrochemical and mechanical properties of hydrogels based on conductive poly(3,4-ethylene dioxythiophene)/poly(styrenesulfonate) and PAAm. Polym. Test. 25, 158165 (2006).
19.Naficy, S., Razal, J.M., Spinks, G.M., Wallace, G.G., and Whitten, P.G.: Electrically conductive, tough hydrogels with pH sensitivity. Chem. Mater. 24, 34253433 (2012).
20.Green, R.A., Hassarati, R.T., Goding, J.A., and Baek, S.: Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Macromol. Biosci. 12, 494501 (2012).
21.Cho, W., Wu, J., Shim, B.S., Kuan, W.-F., Mastroianni, S.E., Young, W.-S., Kuo, C.-C., Epps III, T.H., and Martin, D.C.: Synthesis and characterization of bicontinuous cubic poly(3,4-ethylene dioxythiophene) gyroid (PEDOT GYR) gels. Phys. Chem. Chem. Phys. 17, 5115 (2015).
22.Skotheim, T.A., and Reynolds, J.R. (eds): Conjugated Polymers: Theory, Synthesis, Properties, and Characterization (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007).
23.Kirchmeyer, S. and Reuter, K.: Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 20772088 (2005).
24.Asplund, M., von Holst, H., and Inganäs, O.: Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3, 8393 (2008).
25.Groenendall, L.B., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R.: Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481494 (2000).
26.Groenendaal, L.B., Zotti, G., Aubert, P.-H., Waybright, S.M., and Reynolds, J.R.: Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 15, 855879 (2003).
27.Göpel, W. and Heiduschka, P.: Introduction to bioelectronics: interfacing biology with electronics. Biosens. Bioelectron. 9, iiixiii (1994).
28.Göpel, W.: Ultimate limits in the miniaturization of chemical sensors. Sens. Actuators A, Phys. 56, 83102 (1996).
29.Schmidt, C.E., Shastri, V.R., Vacanti, J.P., and Langer, R.: Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA 94, 89488953 (1997).
30.Shastri, V.R., Schmidt, C.E., Langer, R.S., and Vacanti, J.P.: Neuronal stimulation using electrically conducting polymers. United States Patent No. 6,096,148, assigned to the Children's Medical Center Corporation, Massachusetts Institute of Technology, USA, 2000.
31.Winter, J.O. and Schmidt, C.E.: Biomimetic strategies and applications in the nervous system. In Biomimetic Design of Materials: Strategies for Interactive Biointerfacial Strategies, Tissue Engineering, and Targeted Drug Delivery, edited by Dillow, A., and Lowman, A. (Marcel-Dekker, New York, 2002), pp. 375415.
32.Cui, X., Hetke, J.F., Wiler, J.A., Anderson, D.J., and Martin, D.C.: Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens. Actuators A, Phys. 93, 818 (2001).
33.Cui, X., Lee, V.A., Raphael, Y., Wiler, J.A., Hetke, J.F., Anderson, D.J., and Martin, D.C.: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56, 261272 (2001).
34.Cui, X.: Surface modification of neural prosthetic devices by conducting polymers and biopolymers. Macromolecular Science and Engineering Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 197 (2002).
35.Cui, X. and Martin, D.C.: Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B, Chem. 89, 92102 (2003).
36.Corey, J.M., Lin, D.S., Martin, D.C., and Feldman, E.L.: Electrospun nanofibers confer directional contact guidance to regenerating neurons. Ann. Neurol. 58, S65 (2005).
37.Abidian, M.R., Kim, D.-H., and Martin, D.C.: Conducting polymer nanotubes for controlled drug release. Adv. Mater. 18, 405409 (2006).
38.Feng, Z.-Q., Wu, J., Cho, W., Leach, M.K., Franz, E.W., Naim, Y.I., Gu, Z.-Z., Corey, J.M., and Martin, D.C.: Highly aligned poly(3,4-ethylenedioxythiophene) (PEDOT) nano- and microscale fibers and tubes. Polymer 54, 702708 (2013).
39.Kim, D.-H., Richardson-Burns, S.M., Povlich, L.K., Abidian, M., Spanninga, S., Hendricks, J.L., and Martin, D.C.: ‘Soft, Fuzzy and Bioactive Conducting Polymer Coatings for Neural Prosthetic Devices’, Chapter 7 in Reichert, William, M. (ed.), Indwelling Neural Implants: Strategies for Contending with the In-Vivo Environment (Frontiers in Neuroengineering, Boca Raton, FL: Taylor and Francis, 2008),
40.Rozlosnik, N.: New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal. Bioanal. Chem. 395, 637645 (2009).
41.Povlich, L.K., et al. : ‘Electroactive Polymeric Biomaterials’, in Ducheyne, P., Healy, K., Hutmacher, D.W., Grainger, D.W., and Kirkpatrick, C.J. (eds.), (Comprehensive Biomaterials, Elsevier, Amsterdam), 1st Edition, 1, pp. 547–561 (2011).
42.Svennersten, K., Larsson, K.C., Berggren, M., and Richter-Dahlfors, A.: Organic bioelectronics in nanomedicine. Biochim. Biophys. Acta 1810, 276285 (2011).
43.Rivnay, J., Owens, R.M., and Malliaras, G.G.: The rise of organic bioelectronics. Chem. Mater. 26, 679685 (2014).
44.Wallace, G.G., Moulton, S., Higgins, M., and Kapsa, R.M.I.: Organic Bionics (Wiley-VCH, Weinheim, Germany, 2012).
45.Otero, T.F., Alfaro, M., Martinez, V., Perez, M.A., and Martinez, J.G.: Biomimetic structural electrochemistry from conducting polymers: processes, charges, and energies. coulovoltammetric results from films on metals revisited. Adv. Funct. Mater. 23, 39293940 (2013).
46.Fattahi, P., Yang, G., Kim, G., and Abidian, M.R.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26, 18461885 (2014).
47.Liao, C., Zhang, M., Yao, M.Y., Hua, T., Li, L., and Yan, F.: Flexible organic electronics in biology: materials and devices. Adv. Mater. (2014) doi: 10.1002/adma.201402625.
48.Balint, R., Cassidy, N.J., and Cartmell, S.H.: Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 23412353 (2014).
49.Molino, P.J. and Wallace, G.G.: Next generation bioelectronics: advances in fabrication coupled with clever chemistries enable the effective integration of biomaterials and organic conductors. APL Mater. 3, 014913 (2015).
50.Isaakson, J., Kjäll, P., Nilsson, D., Robinson, N., Berggren, M., and Richter-Dahlfors, A.: Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673679 (2007).
51.Tybrandt, K., Forchheimer, R., and Berggren, M.: Logic gates based on ion transistors. Nat. Commun. 3, 871 (2012).
52.Leger, J., Berggren, M., and Carter, S. (eds): Iontronics: Ionic Carriers in Organic Electronic Materials and Devices (CRC Press, Taylor and Francis, ISBN 9781439806883, 2011).
53.Martin, D.C., Wu, J., Shaw, C.M., King, Z., Spanninga, S.A., Richardson-Burns, S.M., Hendricks, J., and Yang, J.: The morphology of poly(3,4-ethylenedioxythiophene). Polym. Rev. 50, 340384 (2010).
54.Salleo, A., Kline, R.J., DeLongchamp, D.M., and Chabinyc, M.L.: Microstructural characterization and charge transport in thin films of conjugated polymers. Adv. Mater. 22, 38123838 (2010).
55.Rivnay, J., Noriega, R., Northrup, J.E., Kline, R.J., Toney, M.F., and Salleo, A.: Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306(R) (2011).
56.Rivnay, J., Mannsfeld, S.C.B., Miller, C.E., Salleo, A., and Toney, M.F.: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 54885519 (2012).
57.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 10381044 (2013).
58.Venkataraman, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., and Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384388 (2014).
59.Yang, J., Lipkin, K., and Martin, D.C.: Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices. J. Biomater. Sci.—Polym. Ed. 18, 10751089 (2007).
60.Sharp, D.G. and Beard, J.W.: Size and density of polystyrene particles measured by ultracentrifugation. J. Biol. Chem. 185, 247253 (1950).
61.Yang, J. and Martin, D.C.: Microporous conducting polymers on neural prosthetic devices. II. Physical characterization. Sens. Actuators A, Phys. 113, 204211 (2004).
62.Yang, J. and Martin, D.C.: Microporous conducting polymers on neural prosthetic devices. I. electrochemical deposition. Sens. Actuators B, Chem. 101, 133142 (2004).
63.Euliss, L.E., DuPont, J.A., Gratton, S., and DeSimone, J.: Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35, 10951104 (2006).
64.Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., and DeSimone, J.M.: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 1009610100 (2005).
65.Merkel, T.J., Herlihy, K.P., Nunes, J., Orgel, R.M., Rolland, J.P., and DeSimone, J.M.: Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26, 1308613096 (2009).
66.Hulvat, J.F. and Stupp, S.I.: Anisotropic properties of conducting polymers prepared by liquid crystal templating. Adv. Mater. 16, 589592 (2004).
67.Hulvat, J.F. and Stupp, S.I.: Liquid crystal templating of conducting polymers. Angew. Chem., Int. Ed. 42, 778781 (2003).
68.Yang, J., Kim, D., Hendricks, J.L., Leach, M., Northey, R., and Martin, D.C.: Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater. 1, 125136 (2005).
69.Kim, O., Kim, S.Y., Park, B., Hwang, W., and Park, M.J.: Factors affecting electromechanical properties of ionic polymer actuators based on ionic liquid-containing block copolymers. Macromolecules 47, 43574368 (2014).
70.Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M., and Yaghi, O.M.: Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 10211023 (2001).
71.Feng, X., Chen, L., Honsho, Y., Saengsawang, O., Liu, L., Wang, L., Saeki, A., Irle, S., Seki, S., Dong, Y., and Jiang, D.: An ambipolar conducting organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv. Mater. 24, 30263031 (2012).
72.Ding, X., Feng, X., Saeki, A., Seki, S., Nagai, A., and Jiang, D.: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling pi-electronic functions. Chem. Commun. 48, 89528954 (2012).
73.Feng, X., Ding, X. and Jiang, D.: Covalent organic frameworks. Chem. Soc. Rev. 41, 60106022 (2012).
74.Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B.F., Whitesides, G.M., and Stuckey, G.D.: Hierarchically ordered oxides. Science 282, 22442246 (1998).
75.Yuan, D., Lasagni, A., Hendricks, J.L., Martin, D.C., and Das, S.: Patterning of periodic nano-cavities on PEDOT-PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography. Nanotechnology 23, 015304 (2012).
76.Lasagni, A.F., Shao, P., Hendricks, J.L., Shaw, C.M., Martin, D.C., and Das, S.: Direct fabrication of periodic patterns with hierarchical sub-wavelength structures on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) thin films using femtosecond laser interference patterning. Appl. Surf. Sci. 256, 17081713 (2010).
77.Lasagni, A., Hendricks, J.L., Shaw, C.M., Yuan, D., Martin, D.C., and Das, S.: Direct laser interference patterning of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) thin films. Appl. Surf. Sci. 255(22), 91869192 (2009).
78.Hong, J.-Y., Hwang, Y.-K., Kye, Y.M., Myung, H., Won, Y.S., and Huh, S.: Hierarchically structured functionalizable mesoporous PEDOT-derived conducting polymers. Mater. Lett. 96, 181184 (2013).
79.Peppas, N.A. and Langer, R.: New challenges in biomaterials. Science 263, 17151720 (1994).
80.Peppas, N.A., Bures, P., Leobandung, W., and Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 2746 (2000).
81.Kim, D., Abidian, M., and Martin, D.C.: Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. 71A, 577585 (2004).
82.Abidian, M.R., and Martin, D.C.: ‘Multifunctional Nanobiomaterials for Neural Interfaces’, Advanced Functional Materials, 19(4), 573–85 (2009).
83.Poole-Warren, L., Lovell, N., Baek, S., and Green, R.: Development of bioactive conductive polymers for neural interfaces. Expert Rev. Med. Devices 7, 3549 (2010).
84.Green, R.A., Lim, K.S., Henderson, W.C., Hassarati, R.T., Martens, P.J., Lovell, N.H., and Poole-Warren, L.A.: Living electrodes: tissue engineering the neural interface. 35th Annual Int. Conf. of the IEEE EMBS, 2013, pp. 6957–6960.
85.Green, R.A., Matteucci, P.B., Hassarati, R.T., Giraud, B., Dodds, C.W.D., Chen, S., Byrnes-Preston, P.J., Suaning, G.J., Poole-Warren, L.A., and Lovell, N.H.: Performance of conducting polymer electrodes for stimulating neuroprosthetics. J. Neural Eng. 10, 016009 (2013).
86.Lu, Y., He, W., Cao, T., Guo, H., Zhang, Y., Li, Q., Shao, Z., Cui, Y., and Zhang, X.: Elastic, conductive, polymeric hydrogels and sponges. Sci. Rep. 4, 5792 (2014).
87.Nowak, A.P., Breedveld, V., Pakstis, L., Pine, D.J., Pochan, D.J., and Deming, T.J.: Rapid recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424428 (2002).
88.Jia, X., Yeo, Y., Clifon, R.J., Jiao, T., Kohane, D.S., Kobler, J., Zeitels, S.M., and Langer, R.: Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 33363344 (2006).
89.Jha, A.K., Hule, R.A., Jiao, T., Teller, S.S., Clifton, R.J., Duncan, R.L., Pochan, D.J., and Jia, X.: Structural analysis and mechanical characterization of hyaluronic acid-based doubly crosslinked networks. Macromolecules 42, 537546 (2009).
90.Zhang, H., Dicker, K.T., Xu, X., Jia, X., and Fox, J.M.: Interfacial bioorthogonal crosslinking. ACS Macro Lett. 3, 727731 (2014).
91.Rothberg, L., Paquette, S., Rhinehart, J., McCamant, D., Kas, O., Charati, M., Galvin, M., and Kiick, K.L.: Photophysical consequences of interactions between conjugated chromophores. Laser Sci. LMA1 (2010).
92.Xiao, Y., Cui, X., and Martin, D.C.: Electrochemical polymerization and properties of PEDOT/S-PEDOT on neural microelectrode arrays. J. Electroanal. Chem. 573, 4348 (2004).
93.Xiao, Y., Martin, D.C., Cui, X., and Shenai, M.: Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4-ethylenedioxythiophene) and its biocompatibility. Appl. Biochem. Biotechnol. 128, 117129 (2006).
94.Luo, S.-C., Ali, E.M., Tansil, N.C., Yu, H.-h., Gao, S., Kantchev, E.A.B., and Ying, J.Y.: Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 24, 80718077 (2008).
95.Zhang, L., Wen, Y., Yao, Y., Xu, J., Duan, X., and Zhang, G.: Synthesis and characterization of PEDOT derivative with carboxyl group and its chemo/bio sensing application as nanocomposite, immobilized biological and enhanced optical materials. Electrochim. Acta 116, 343354 (2014).
96.Povlich, L.K., Cho, J.C., Spanninga, S., Martin, D.C., and Kim, J.: Carboxylic acid-modified EDOT for bio-functionalization of neural probe electrodes. Polym. Preprints 48, 78 (2007).
97.Bhagwat, N., Kiick, K.L., and Martin, D.C.: Electrochemical deposition and characterization of carboxylic-acid functionalized PEDOT copolymers. J. Mater. Res. 29, 28352844 (2014).
98.Povlich, L.K., Cho, J.C., Leach, M.K., Kim, J., Corey, J.M., and Martin, D.C.: Synthesis, copolymerization, and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim. Biophys. Acta 1830, 42884293 (2012).
99.Feldman, K. and Martin, D.C.: Functional conducting polymers via thiol-ene chemistry. Biosens. Bioelectron. 2, 305317 (2012).
100.Wei, B., Ouyang, L., Liu, J., and Martin, D.C.: Post-polymerization functionalization of poly(3,4-propylenedioxythiophene) (PProDOT) via thiol-ene “click” chemistry. J. Mater. Chem. B (2015). doi: 10.1039/C4TB02033B.
101.Ouyang, L.: Crosslinking, electrografting, and in vivo polymerization of poly(3,4-ethylene dioxythiophene) (PEDOT) and derivatives as reliable neural interfacing materials. Materials Science and Engineering Ph.D. dissertation, University of Delaware (2014).
102.Richardson-Burns, S.M., Hendricks, J.L., Povlich, L.K., Foster, B., Kim, D.-H., and Martin, D.C.: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 15391552 (2007).
103.Richardson-Burns, S.M., Hendricks, J.L., and Martin, D.C.: Electrochemical polymerization of conducting polymers in living neural tissue. J. Neural Eng. 4, L6L13 (2007).
104.Ouyang, L., Feldman, K.E., Green, R., and Martin, D.C.: Direct local polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in rat cortex. Prog. Brain Res. 194, 263271 (2011).
105.Wilks, S.J., Wooley, A.J., Ouyang, L., Martin, D.C., and Otto, K.J.: In vivo polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in rodent cerebral cortex. Conf. of the IEEE EMBS 2011, 5412–5415 (2011).
106.Biran, R., Martin, D.C., and Tresco, P.A.: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115126 (2005).
107.Ouyang, L., Shaw, C., Liu, J., Griffin, A.L., and Martin, D.C.: In vivo polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in living rat hippocampus does not cause a significant loss of performance in a delayed alternation (DA) task. J. Neural Eng. 11, 026005 (2014).
108.Lu, W., Fadeev, A.G., Qi, B., Smela, E., Mattes, B.R., Ding, J., Spinks, G.M., Mazurkiewicz, J., Zhou, D., Wallace, G.G., MacFarlane, D.R., Forsyth, S.A., and Forsyth, M.: Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983987 (2002).
109.Luo, X. and Cui, X.T.: Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid. Acta Biomater. 7, 441446 (2011).
110.Döbbelin, M., Pozo-Gonzalo, C., Marcilla, R., Blanco, R., Segura, J.L., Pomposo, J.A., and Mecerreyes, D.: Electrochemical synthesis of PEDOT derivatives bearing imidazolium-ionic liquid moieties. J. Polym. Sci. A, Polym. Chem. 47, 30103021 (2009).
111.Cui, X.T., and Zhou, D.D.: Poly(3,4-Ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehab. Eng. 15, 502508 (2007).
112.Abidian, M.R., Corey, J.M., Kipke, D.R., and Martin, D.C.: Conducting polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6, 421429 (2010).
113.Khodagholy, D., Doublet, T., Gurfinkel, M., Quilichini, P., Ismailova, E., Leleux, P., Herve, T., Sanaur, S., Bernard, C., and Malliaras, G.G.: Highly conformable conducting polymer electrodes for in vivo recordings. Adv. Mater. 23, H268H272 (2011).
114.Stavrinidou, E., Leleux, P., Rajaona, H., Khodagholy, D., Rivnay, J., Lindau, M., Sanaur, S., and Malliaras, G.G.: Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 44884493 (2013).
115.Pires, F., Ferreira, Q., Rodrigues, C.A.V., Morgado, J., and Ferreira, F.C.: Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochem. Biophys. Acta 1850, 11581168 (2015).
116.Riess, I.: Mixed ionic-electronic conductors—material properties and applications. Solid State Ion. 157, 117 (2003).
117.Litzelman, S.J. and Tuller, H.L.: Measurement of mixed conductivity in thin films with microstructured Hebb-Wagner blocking electrodes. Solid State Ion. 180, 11901197 (2009).
118.Tuller, H.L.: Solid state electrochemical systems—opportunities for nanofabricated or nanostructured materials. J. Electroceram. 1, 211218 (1997).
119.Barsoukov, E. and Macdonald, J.R.: Impedance Spectroscopy: Theory, Experiment, and Applications (John Wiley & Sons, New York, NY, 2005).
120.Abidian, M. and Martin, D.C.: Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29, 12731283 (2008).
121.Ren, X. and Pickup, P.G.: Impedance measurements of ionic conductivity as a probe of structure in electrochemically deposited polypyrrole films. J. Electroanal. Chemistry 396, 359364 (1995).
122.Ren, X. and Pickup, P.G.: An impedance study of electron transport and electron transfer in composite polypyrrole + polystyrenesulphonate films. J. Electroanal. Chem. 420, 251257 (1997).
123.Lefebvre, M., Qi, Z., Rana, D., and Pickup, P.G.: Chemical synthesis, characterization, and electrochemical studies of poly(3,4-ethylenedioxythiophene)/poly(styrene-4-sulfonate) composites. Chem. Mater. 11, 262268 (1999).
124.Li, G. and Pickup, P.G.: Ion transport in poly(3,4-ethylendioxythiophene)-poly(styrene-4-sulfonate) composites. Phys. Chem. Chem. Phys. 2, 12551260 (2000).
125.Sotzing, G.A., Reynolds, J.R., and Steel, P.J.: Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem. Mater. 8, 882889 (1996).
126.Pei, Q., Zuccarello, G., Ahlskog, M., and Inganäs, O.: Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 13471351 (1994).
127.Wang, X., Shapiro, B., and Smela, E.: Visualizing ion currents in conjugated polymers. Adv. Mater. 16, 16051609 (2004).
128.Stavrinidou, E., Leleux, P., Rajaona, H., Fiochhi, M., Sanaur, S., and Malliaras, G.G.: A simple model for ion injection and transport in conducting polymers. J. Appl. Phys. 113, 244501 (2013).
129.Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275309 (2008).
130.Li, D., Cao, C., Zhang, J., Zhan, S., Chen, S., and Sun, B.: Subthalamic nucleus deep brain stimulation for Parkinson's disease: 8 years of follow up. Transl. Neurodegener. 2, 11 (2013).
131.Blanksby, S.J. and Ellison, G.B.: Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255263 (2003).
132.Wu, J., Shaw, C.M., and Martin, D.C.: ‘Electron Microscopy of Organic Materials: An Overview and Review of Recent Developments’, in Hashimoto, H., and Thomas, E.L. (eds.), Volume 2: Polymer Characterization (Comprehensive Polymer Science, Elsevier), 509525 (2012).
133.Chung, K. and Deisseroth, K.: CLARITY for mapping the nervous system. Nat. Methods 10, 508513 (2013).
134.Tomer, R., Ye, L., Hsueh, B., and Deisseroth, K.: Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 16821697 (2014).
135.Chen, F., Tillberg, P.W., and Boyden, E.S.: Expansion microscopy. Science 347, 543548 (2015).
136.Tang, H.X., Foran, B., and Martin, D.C.: Quantitative measurement of adhesion between polypropylene blends and paints by tensile mechanical testing. Polym. Eng. Sci. 41, 440448 (2001).
137.Martin, D.C. and Thomas, E.L.: Experimental high-resolution electron microscopy of polymers. Polymer 36, 17431759 (1995).
138.Martin, D.C., Chen, J., Yang, J., Drummy, L.F., and Kübel, C.: High resolution electron microscopy of ordered polymers and organic molecular crystals: recent developments and future possibilities. J. Polym. Sci., Phys. 43, 17491778 (2005). Jonge, N. and Ross, F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695704 (2011).
140.Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., and Bau, H.H.: Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 2237322382 (2014).
141.Shibuta, Y., Okajima, Y., and Suzuki, T.: Phase-field modeling for electrodeposition process. Sci. Technol. Adv. Mater. 8, 511518 (2007).
142.Shibuta, Y., Okajima, Y., and Suzuki, T.: A phase-field simulation of bridge formation in a nanometer-scale switch. Scr. Mater. 55, 10951098 (2006).
143.Yu, H.-C. and Thornton, K.: The rough idea of modeling electro-polymerization. The University of Michigan, 2008.
144.Thornton, K., Agren, J., and Voorhees, P.W.: Modelling the evolution of phase boundaries in solids at the meso- and nano-scales. Acta Mater. 51, 56755710 (2003).
145.ISO 10993: Biological Evaluation and Biocompatibility Testing of Medical Devices (International Organization for Standardization, Geneva, Switzerland, 1995).
146.Kim, Y.J., Wu, W., Chun, S.E., Whitacre, J., and Bettinger, C.J.: Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. USA 110, 2091220917 (2013).
147.Bettinger, C.J., Bruggeman, J.P., Misra, A., Borenstein, J.T., and Langer, R.: Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30, 30503057 (2009).
148.Bettinger, C.J., Misra, A.C., Langer, R., and Borenstein, J.T.: Microcontact printing of melanin thin films for neuronal tissue engineering applications. Symp. MM: Biomolecular and Biologically Inspired Interfaces and Assemblies; Materials Research Society, MM 6.22. Boston, MA, Fall (2007)
149.Povlich, L.K., Le, J., Kim, J., and Martin, D.C.: Poly(5,6-dimethoxyindole-2-carboxylic acid) (PDMICA): a melanin-like polymer with unique electrochromic and structural properties. Macromolecules 43, 37703774 (2010).
150.Irimia-Vladu, M., Sariciftci, N.S., and Bauer, S.: Exotic materials for bio-organic electronics. J. Mater. Chem. 21, 13501361 (2011).
151.Irimia-Vladu, M., Glowacki, E.D., Troshin, P.A., Schwabegger, G., Leonat, L., Susarova, D.K., Krystal, O., Ullah, M., Kanbur, Y., Bodea, M.A., Razumov, V.F., Sitter, H., Bauer, S., and Sariciftci, N.S.: Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24, 375380 (2012).
152.Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H., and El-Naggar, M.Y.: Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111, 1288312888 (2014).
153.Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R.L., Kjeldsen, K.U., Schreiber, L., Gorby, Y.A., El-Naggar, M.Y., Leung, K.M., Schramm, A., Risgaard-Petersen, N., and Nielsen, L.P.: Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218221 (2012).
154.El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H., and Gorby, Y.A.: Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 1812718131 (2007).
155.Seymour, J. and Kipke, D.R.: Neural probe design for reduced tissue encapsulation. Biomaterials 28, 35943607 (2007).
156.Seymour, J. and Kipke, D.R.: Open-architecture neural probes reduce cellular encapsulation. Mater. Res. Soc. CC2.4 (2006).
157.Skousen, J.L., Bridge, M.J., and Tresco, P.A.: A strategy to reduce neuroinflammation surrounding devices implanted chronically in brain tissue by manipulating device surface permeability. Biomaterials 36, 3334 (2015).
158.Skousen, J.L., Merriam, Sr.M.E., Srivannavit, O., Perlin, G., Wise, K.D., and Tresco, P.A.: Chapter 12—reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays. Prog. Brain Res. 194, 167180 (2011).
159.Kim, D.-H., Viventi, J., Amsden, J., Xiao, J., Vigeland, L., Kim, Y.-S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y., Hwang, K.-C., Zakin, M.R., Litt, B., and Rogers, J.A.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511517 (2010).
160.Xu, S., Yan, Z., Jang, K.-I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D., Zhou, G., Lee, J., Chung, H.U., Cheng, H., Ren, W., Banks, A., Li, X., Paik, U., Nuzzo, R.G., Huang, Y., Zhang, Y., and Rogers, J.A.: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154159 (2015).
161.Smela, E.: Conjugated polymer actuators for biomedical applications. Adv. Mater. 15, 481494 (2003).
162.Jager, E.W.H., Smela, E., and Inganas, O.: Microfabricating conjugated polymer actuators. Science 290, 15401545 (2000).
163.Jager, E.W.H., Smela, E., and Inganäs, O.: Polypyrrole microactuators. Synth. Met. 102, 13091310 (1999).
164.Smela, E., Inganäs, O., and Lundström, I.: Controlled folding of micrometer-size structures. Science 268, 17351738 (1995).
165.Kozai, T.D.Y., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., and Cui, X.T.: Brain tissue responses to neural implants impact signal sensitivity and interventional strategies. ACS Chem. Neurosci. 6, 4867 (2015).
166.Kozai, T.D.Y., Alba, N.A., Zhang, H., Kotov, N.A., Gaunt, R.A., and Cui, X.T.: ‘Chapter 5: Nanostructured Coatings for Improved Charge Delivery to Neurons’, in De Vittorio, M., Martiradonna, L., and Assad, J. (eds.), Nanotechnology and Neuroscience: Nano-electronic, Photonic, and Mechanical Neuronal Interfacing (New York, NY: Springer), 293 (2014).
167.Kozai, T.D.Y., Catt, K., Gugel, Z.V., Olafsson, V.T., Vazquez, A.L., and Cui, X.T.: Mechanical failure modes of chronically implanted planer silicon-based neural probes for laminar recording. Biomaterials 37, 2539 (2014).
168.Canales, A., Jia, X., Froriep, U.P., Koppes, R.A., Tringides, C.M., Selvidge, J., Lu, C., Hou, C., Wei, L., Fink, Y., and Anikeeva, P.: Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277284 (2015).
169.Minev, I.R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, M., Moraud, E.M., Gandar, J., Capogrosso, M., Milekovic, T., Asboth, L., Torres, R.F., Vachicouras, N., Liu, Q., Pavlova, N., Duis, S., Larmagnac, A., Vörös, J., Micera, S., Suo, Z., Courtine, G., and Lacour, S.P.: Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159 (2015).
170.Nguyen, J.K., Park, D.J., Skousen, J.L., Hess-Dunning, A.E., Tyler, D.J., Rowan, S.J., Weder, C., and Capadona, J.R.: Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J. Neural Eng. 11, 056014 (2014).
171.Jorfi, M., Skousen, J.L., Weder, C., and Capadona, J.R.: Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 12, 01101 (2015).
172.Hu, H., Ni, Y., Montana, V., Haddon, R.C., and Parpura, V.: Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4, 507511 (2004).
173.Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., and Gross, G.W.: Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3, 434438 (2008).
174.Luo, X., Weaver, C.L., Tan, S., and Cui, X.T.: Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. J. Mater. Chem. B 1, 13401348 (2013).
175.Xiao, X., Wang, J., Carlisle, J.A., Mech, B., Greenberg, R., Freda, R., Humayun, M., Weiland, J., and Auciello, O.: In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J. Biomed. Mater. 77B, 273281 (2006).
176.Luo, X., Weaver, C.L., Zhou, D.D., Greenberg, R., and Cui, X.T.: Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32, 55515557 (2011).
177.Mousavi, Z., Bobacka, J., Lewenstam, A., and Ivaska, A.: Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membraned-based potassium ion-selective electrodes. J. Electroanal. Chem. 633, 246252 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Video

David C. Martin supplementary video
Conjugated polymers for interfacing electronic biomedical devices with living tissue



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed