Skip to main content Accessibility help

Nanoscale magnetization reversal by electric field-induced ion migration

  • Qilai Chen (a1) (a2) (a3), Gang Liu (a1) (a3), Shuang Gao (a1) (a3), Xiaohui Yi (a1) (a3), Wuhong Xue (a1) (a3), Minghua Tang (a4), Xuejun Zheng (a2) and Run-Wei Li (a1) (a3)...


Nanoscale magnetization modulation by electric field enables the construction of low-power spintronic devices for information storage applications and, etc. Electric field-induced ion migration can introduce desired changes in the material's stoichiometry, defect profile, and lattice structure, which in turn provides a versatile and convenient means to modify the materials’ chemical-physical properties at the nanoscale and in situ. In this review, we provide a brief overview on the recent study on nanoscale magnetization modulation driven by electric field-induced migration of ionic species either within the switching material or from external sources. The formation of magnetic conductive filaments that exhibit magnetoresistance behaviors in resistive switching memory via foreign metal ion migration and redox activities is also discussed. Combining the magnetoresistance and quantized conductance switching of the magnetic nanopoint contact structure may provide a future high-performance device for non-von Neumann computing architectures.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nanoscale magnetization reversal by electric field-induced ion migration
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nanoscale magnetization reversal by electric field-induced ion migration
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nanoscale magnetization reversal by electric field-induced ion migration
      Available formats


Corresponding author

Address all correspondence to Gang Liu, Xuejun Zheng, Run-Wei Li at,,


Hide All
1.Chappert, C., Fert, A., and Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007).
2.Mangin, S., Ravelosona, D., Katine, J.A., Carey, M.J., Terris, B.D., and Fullerton, E.E.: Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006).
3.Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N., Ünal, A.A., Kronast, F., Valencia, S., Dkhil, B., and Barthélémy, A.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).
4.Ostler, T.A., Barker, J., Evans, R.F.L., Chantrell, R.W., Atxitia, U., Chubykalo-Fesenko, O., El Moussaoui, S., Le Guyader, L., Mengotti, E., Heyderman, L.J., Nolting, F., Tsukamoto, A., Itoh, A., Afanasiev, D., Ivanov, B.A., Kalashnikova, A.M., Vahaplar, K., Mentink, J., Kirilyuk, A., Rasing, T., and Kimel, A.V.: Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).
5.Ramesh, R. and Spaldin, N.A.. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
6.Hur, H.N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., and Cheong, S.-W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004).
7.Radaelli, G., Petti, D., Plekhanov, E., Fina, I., Torelli, P., Salles, B.R., Cantoni, M., Rinaldi, C., Gutiérrez, D., Panaccione, G., Varela, M., Picozzi, S., Fontcuberta, J., and Bertacco, R.: Electric control of magnetism at the Fe/BaTiO3 interface. Nat. Commun. 5, 3404 (2014).
8.Chiba, D., Yamanouchi, M., Matsukura, F., and Ohno, H.: Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943 (2003).
9.Yamada, Y., Ueno, K., Fukumura, T., Yuan, H.T., Shimotani, H., Iwasa, Y., Gu, L., Tsukimoto, S., Ikuhara, Y., and Kawasaki, M.: Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065 (2011).
10.Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., and Suzuki, Y.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nano. 4, 158 (2009).
11.Ghidini, M., Pellicelli, R., Prieto, J.L., Moya, X., Soussi, J., Briscoe, J., Dunn, S., and Mathur, N.D.: Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat. Commun. 4, 1453 (2013).
12.Chai, Y.S., Kwon, S., Chun, S.H., Kim, I., Jeon, B.-G., Kim, K.H., and Lee, S.: Electrical control of large magnetization reversal in a helimagnet. Nat. Commun. 5, 4208 (2014).
13.Cuellar, F.A., Liu, Y.H., Salafranca, J., Nemes, N., Iborra, E., Sanchez-Santolino, G., Varela, M., Garcia Hernandez, M., Okamoto, S., Pennycook, S.J., Bibes, M., Barthélémy, A., te Velthuis, S.G.E., Sefrioui, Z., Leon, C., and Santamaria, J.: Reversible electric-field control of magnetization at oxide interfaces. Nat. Commun. 5, 4215 (2014).
14.Maier, J.. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805 (2005).
15.Waser, R. and Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007).
16.Yang, J.J., Strukov, D.B., and Stewart, D.R.: Memristive devices for computing. Nat. Nano. 8, 13 (2013).
17.Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., and Lu, W.: Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).
18.Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., and Hwang, C.S.: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nano. 5, 148 (2010).
19.Tan, H., Liu, G., Yang, H.L., Yi, X.H., Pan, L., Shang, J., Long, S.B., Liu, M., Wu, Y.H., and Li, R.-W.: Light-gated memristor with integrated logic and memory functions. ACS. Nano. 11, 11298 (2017).
20.Xue, W.H., Liu, G., Zhong, Z.C., Dai, Y.H., Shang, J., Liu, Y.W., Yang, H.L., Yi, X.H., Tan, H.W., Pan, L., Gao, S., Ding, J., Xu, X.-H., and Li, R.-W.: A 1D vanadium dioxide nanochannel constructed via electric-field-induced ion transport and its superior metal-insulator transition. Adv. Mater. 29, 39 (2017).
21.Dasgupta, S., Das, B., Knapp, M., Brand, R.A., Ehrenberg, H., Kruk, R., and Hahn, H.: Intercalation-driven reversible control of magnetism in bulk ferromagnets. Adv. Mater. 26, 4639 (2014).
22.Bauer, U., Yao, L., Tan, A.J., Agrawal, P., Emori, S., Tuller, H.L., Dijken, S., and Beach, G.S.D.: Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174 (2015).
23.Chen, X., Zhu, X., Xiao, W., Liu, G., Feng, Y.P., Ding, J., and Li, R.-W.: Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. ACS. Nano. 9, 4210 (2015).
24.Zhu, X., Zhou, J., Chen, L., Guo, S., Liu, G., Li, R.-W., and Lu, W.D.: In situ nanoscale electric field control of magnetism by nanoionics. Adv. Mater. 28, 7658 (2016).
25.Chen, G., Song, C., Chen, C., Gao, S., Zeng, F., and Pan, F.: Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 24, 3515 (2012).
26.Cui, B., Song, C., Wang, G., Yan, Y., Peng, J., Miao, J., Mao, H., Li, F., Chen, C., Feng, F., and Pan, F.: Reversible ferromagnetic phase transition in electrode-gated manganites. Adv. Funct. Mater. 24, 7233 (2014).
27.Cui, B., Song, C., Gehring, G A., Li, F., Wang, G., Chen, C., Peng, J., Mao, H., Zeng, F., and Pan, F.: Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv. Funct. Mater. 25, 864 (2015).
28.Yang, Z., Zhan, Q., Zhu, X., Liu, Y., Yang, H., Hu, B., Shang, J., Pan, L., Chen, B., and Li, R.-W.: Tunneling magnetoresistance induced by controllable formation of Co filaments in resistive switching Co/ZnO/Fe structures. EPL. 108, 58004 (2014).
29.Otsuka, S., Hamada, Y., Shimizu, T., and Shingubara, S.: Ferromagnetic nano-conductive filament formed in Ni/TiO2/Pt resistive-switching memory. Appl. Phys. A. 118, 613 (2015).
30.Otsuka, S., Hamada, Y., Ito, D., Shimizu, T., and Shingubara, S.: Magnetoresistance of conductive filament in Ni/HfO2/Pt resistive switching memory. Jpn. J. Appl. Phys. 54, 05ED02 (2015).
31.Li, L., Liu, Y., Teng, J., Long, S., Guo, Q., Zhang, M., Wu, Y., Yu, G., Liu, Q., Lv, H., and Liu, M.: Anisotropic magnetoresistance of nano-conductive filament in Co/HfO2/Pt resistive switching memory. Nanoscale. Res. Lett. 12, 210 (2017).
32.Zhu, X.J., Ong, C.S., Xu, X., Hu, B., Shangm, J., Yang, H., Katlakunta, S., Liu, Y., Chen, X., Pan, L., Ding, J., and Li, R.-W.: Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Sci. Rep. 3, 1084 (2012).
33.Wong, H.-S.P., Lee, H.-Y., Yu, S., Chen, Y-S., Wu, Y., Chen, P-S., Lee, B., Chen, F.T., and Tsai, M.-J.: Metal-oxide RRAM. Proc. IEEE 100, 1951 (2012).
34.Valov, I.: Redox-based resistive switching memories (ReRAMs): electrochemical systems at the atomic scale. ChemElectroChem 1, 26 (2014).
35.Waser, R., Dittmann, R., Staikov, G., and Szot, K.: Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).
36.Zhang, Y., Schultz, A.M., Li, L., Chien, H., Salvador, P.A., and Rohrer, G.S.: Combinatorial substrate epitaxy: a high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures. Acta. Mater. 60, 6486 (2012).
37.Dhanapal, P., Guo, S., Wang, B., and Li, R.-W.: High-throughput investigation of orientations effect on nanoscale magnetization reversal in cobalt ferrite thin films induced by electric field. Appl. Phys. Lett. 111, 162401 (2017).
38.Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., and Ohtani, K.: Electric-field control of ferromagnetism. Nature 408, 944 (2000).
39.Chiba, D., Sawicki, M., Nishitani, Y., Matsukura, F., and Ohno, H.: Magnetization vector manipulation by electric fields. Nature 455, 515 (2008).
40.Stolichnov, I., Riester, S.W.E., Trodahl, H.J., Setter, N., Rushforth, A.W., Edmonds, K.W., Campion, R.P., Foxon, C.T., Gallagher, B.L., and Jungwirth, T.: Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat. Mater. 7, 464 (2008).
41.Chiba, D.: Ono T. Control of magnetism in Co by an electric field. J. App.l Phys. 46, 213001 (2013).
42.Herrera Diez, L., Bernand-Mantel, A., Vila, L., Warin, P., Marty, A., Ono, S., Givord, D., and Ranno, L.: Electric-field assisted depinning and nucleation of magnetic domain walls in FePt/Al2O3/liquid gate structures. Appl. Phys. Lett. 104, 082413 (2014).
43.Cui, B., Song, C., Wang, G.-Y., Yan, Y.-N., Peng, J.-J., Miao, J.-H., Mao, H.-J., Li, F., Chen, C., Zeng, F., and Pan, F.: Reversible ferromagnetic phase transition in electrode-gated manganites. Adv. Func. Mater. 24, 7233 (2014).
44.Wang, Y.-Y., Song, C., Cui, B., Wang, G.Y., Zeng, F., and Pan, F.: Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).
45.Zhang, P.-X., Yin, G.-F., Wang, Y.-Y., Bin, C., Feng, P., and Cheng, S.: Electrical control of antiferromagnetic metal up to 15 nm. Science China Physics. 59, 687511 (2016).
46.Zhu, G.-N., Liu, H.-J., Zhuang, J.-H., Wang, C.-X., Wang, Y.-G., and Xia, Y.-Y.: Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Ener. Env. Sci. 4, 4016 (2011).
47.Sun, C., Rajasekhara, S., Goodenough, J.B., and Zhou, F.: Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 133, 2132 (2011).
48.Manchon, A., Pizzini, S., Vogel, J., Uhlîr, V., Lombard, L., Ducruet, C., Auffret, S., Rodmacq, B., Dieny, B., Hochstrasser, M., and Panaccione, G.: X-ray analysis of the magnetic influence of oxygen in Pt/Co/AlOx trilayers. J. Appl. Phys. 103, 07A912 (2008).
49.Rodmacq, B., Manchon, A., Ducruet, C., Auffret, S., and Dieny, B.: Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers. Phys. Rev. B. 79, 024423 (2009).
50.Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., and Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39 (2012).
51.Wang, W.G., Li, M., Hageman, S., and Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64 (2012).
52.Miyazaki, T., and Tezuka, N.: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231 (1995).
53.Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273 (1995).
54.Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., and Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004).
55.Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004).
56.Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., and Hwang, C.S.: Emerging memories: resistive switching mechanism and current status. Rep. Prog. Phys. 75, 076502 (2012).
57.Smit, J.: Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Phys. 17, 612 (1951).
58.McGuire, T. and Potter, R.L.: Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE. Trans. Magn. 11, 1018 (1975).
59.Hasegawa, T., Terabe, K., Tsuruoka, T., and Aono, M.: Atomic switch: atom/ion movement controlled devices for beyond Von-Neumann computers. Adv. Mater. 24, 252 (2012).
60.Zhu, X., Su, W., Liu, Y., Hu, B., Pan, L., Lu, W., Zhang, J., and Li, R.-W.: Observation of conductance quantization in oxide-based resistive switching memory. Adv. Mater. 24, 3941 (2012).
61.Mehonic, A., Vrajitoarea, A., and Cueff, S.: Quantum conductance in silicon oxide resistive memory devices. Sci. Rep. 3, 2708 (2013).
62.Long, S., Perniola, L., Cagli, C., Buckley, J., Lian, X., Miranda, E., Pan, F., Liu, M., and Suñé, J.: Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci. Rep. 3, 2929 (2013).
63.Nandakumar, S.R., Minvielle, M., Nagar, S., Dubourdieu, C., and Rajendran, B.: A 250 mv Cu/SiO2/W memristor with half-integer quantum conductance states. Nano. Lett. 16, 1602 (2016).
64.Wedig, A., Luebben, M., and Cho, D.Y.: Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nano. 11, 67 (2016).
65.Krishnan, K., Muruganathan, M., and Tsuruoka, T.: Highly reproducible and regulated conductance quantization in a polymer-based atomic switch. Adv. Funct. Mater. 27, 10 (2017).
66.Garcia, N., Munoz, M., and Zhao, Y.W.: Magnetoresistance in excess of 200% in ballistic Ni nanocontacts at room temperature and 100 Oe. Phys. Rev. Lett. 82, 2923 (1999).
67.Chung, S.H., Munoz, M., García, N., Egelhoff, W.F., and Gomez, R.D.: Universal scaling of ballistic magnetoresistance in magnetic nanocontacts. Phys. Rev. Lett. 89, 287203 (2002).
68.Tatara, G., Zhao, Y.W., Munoz, M., and García, N.: Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys. Rev. Lett. 83, 2030 (1999).
69.Bi, C, Sun, C, and Xu, M: Electrical control of metallic heavy-metal–ferromagnet interfacial states. Phys. Rev. Appl. 8, 034003 (2017).

Related content

Powered by UNSILO

Nanoscale magnetization reversal by electric field-induced ion migration

  • Qilai Chen (a1) (a2) (a3), Gang Liu (a1) (a3), Shuang Gao (a1) (a3), Xiaohui Yi (a1) (a3), Wuhong Xue (a1) (a3), Minghua Tang (a4), Xuejun Zheng (a2) and Run-Wei Li (a1) (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.