Skip to main content Accessibility help

New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope

  • Nicola Stehling (a1), Robert Masters (a1), Yangbo Zhou (a2), Robert O'Connell (a3), Chris Holland (a1), Hongzhou Zhang (a3) and Cornelia Rodenburg (a1)...


The helium ion microscope (HeIM) holds immense promise for nano-engineering and imaging with scope for in-situ chemical analysis. Here we will examine the potential of secondary electron hyperspectral imaging (SEHI) as a new route to exploring chemical variations in both two and three dimensions. We present a range of early applications in the context of image interpretation in wider materials science and process control in ion beam-based nano-engineering. Necessary steps for SEHI in the HeIM to evolve into a reliable technique which can be fully embedded into nano-engineering workflows are considered.


Corresponding author

Address all correspondence to Cornelia Rodenburg at


Hide All
1.Sasaki, N.: An ion microscope with a transverse magnetic field. J. Appl. Phys. 19, 10501053 (1948), doi: 10.1063/1.1698008.
2.Komuro, M., Atoda, N., and Kawakatsu, H.: Ion beam exposure of resist materials. J. Electrochem. Soc. 126, 483490 (1979).
3.Krohn, V.E. and Ringo, G.R.: Ion source of high brightness using liquid metal. Appl. Phys. Lett. 27, 479481 (1975).
4.Levi-Setti, R.: Proton scanning microscopy: feasibility and promise. In Scanning Electron Microscopy, 1st ed.; Johari, O. ed.; IITRI, Chicago, USA, 1974, pp. 125135.
5.Seliger, R.L., Ward, J.W., Wang, V., and Kubena, R.L.: A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34, 310312 (1979).
6.Swanson, L.W.: Liquid metal ion sources: mechanism and applications. Nucl. Instruments Methods Phys. Res. 218, 347353 (1983).
7.Ward, B.W., Notte, J.A., and Economou, N.P.: Helium ion microscope: a new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 24, 28712874 (2006).
8.Livengood, R.H., Tan, S., Hallstein, R., Notte, J., McVey, S., and Faridur Rahman, F.H.M.: The neon gas field ion source—a first characterization of neon nanomachining properties. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 645, 136140 (2011), doi:
9.Rahman, F.H.M., McVey, S., Farkas, L., Notte, J.A., Tan, S., and Livengood, R.H.: The prospects of a subnanometer focused neon ion beam. Scanning 34, 129134 (2012), doi: 10.1002/sca.20268.
10.Fox, D., Chen, Y., Faulkner, C.C., and Zhang, H.: Nano-structuring, surface and bulk modification with a focused helium ion beam. Beilstein J. Nanotechnol. 3, 579 (2012).
11.Zhou, Y., Maguire, P., Jadwiszczak, J., Muruganathan, M., Mizuta, H., and Zhang, H.: Precise milling of nano-gap chains in graphene with a focused helium ion beam. Nanotechnology 27, 325302 (2016).
12.Lemme, M.C., Bell, D.C., Williams, J.R., Stern, L.A., Baugher, B.W.H., Jarillo-Herrero, P., and Marcus, C.M.: Etching of graphene devices with a helium ion beam. ACS Nano 3, 26742676 (2009).
13.Bell, D.C., Lemme, M.C., Stern, L.A., Williams, J.R., and Marcus, C.M.: Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301 (2009).
14.Fox, D.S., Zhou, Y., Maguire, P., O'Neill, A., Ó’Coileáin, C., Gatensby, R., Glushenkov, A.M., Tao, T., Duesberg, G.S., and Shvets, I.V.: Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett. 15, 53075313 (2015).
15.Philipp, P., Rzeznik, L., and Wirtz, T.: Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy. Beilstein J. Nanotechnol. 7, 1749 (2016).
16.Joens, M.S., Huynh, C., Kasuboski, J.M., Ferranti, D., Sigal, Y.J., Zeitvogel, F., Obst, M., Burkhardt, C.J., Curran, K.P., and Chalasani, S.H.: Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci. Rep. 3, 3514 (2013).
17.Tan, S., Livengood, R., Hack, P., Hallstein, R., Shima, D., Notte, J., and McVey, S.: Nanomachining with a focused neon beam: a preliminary investigation for semiconductor circuit editing and failure analysis. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 06F604 (2011).
18.Rzeznik, L., Fleming, Y., Wirtz, T., and Philipp, P.: Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy. Beilstein J. Nanotechnol. 7, 1113 (2016).
19.Maguire, P., Fox, D.S., Zhou, Y., Wang, Q., O'Brien, M., Jadwiszczak, J., McManus, J., McEvoy, N., Duesberg, G.S., and Zhang, H.: Defect sizing, distance and substrate effects in ion-irradiated monolayer 2D materials. arXiv (2017),
20.Melngailis, J.: Focused ion beam lithography. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 80, 12711280 (1993).
21.Shi, X., Prewett, P., Huq, E., Bagnall, D.M., Robinson, A.P.G., and Boden, S.A.: Helium ion beam lithography on fullerene molecular resists for sub-10nm patterning. Microelectron. Eng. 155, 7478 (2016).
22.Wu, H., Stern, L.A., Xia, D., Ferranti, D., Thompson, B., Klein, K.L., Gonzalez, C.M., and Rack, P.D.: Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing. J. Mater. Sci. Mater. Electron. 25, 587595 (2014).
23.Stanford, M.G., Lewis, B.B., Mahady, K., Fowlkes, J.D., and Rack, P.D.: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 30802 (2017).
24.Belianinov, A., Burch, M.J., Kim, S., Tan, S., Hlawacek, G., and Ovchinnikova, O.S.: Noble gas ion beams in materials science for future applications and devices. MRS Bull. 42, 660666 (2017), doi: 10.1557/mrs.2017.185.
25.Huth, M., Porrati, F., Schwalb, C., Winhold, M., Sachser, R., Dukic, M., Adams, J., and Fantner, G.: Focused electron beam induced deposition: a perspective. Beilstein J. Nanotechnol. 3, 597 (2012).
26.Joy, D.C., and Griffin, B.J.: Is microanalysis possible in the helium ion microscope?. Microsc. Microanal. 17, 643649 (2011).
27.Ramachandra, R., Griffin, B., and Joy, D.: A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109, 748757 (2009).
28.Scipioni, L., Sanford, C.A., Notte, J., Thompson, B., and McVey, S.: Understanding imaging modes in the helium ion microscope. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 27, 32503255 (2009), doi: 10.1116/1.3258634.
29.Sijbrandij, S., Thompson, B., Notte, J., Ward, B.W., and Economou, N.P.: Elemental analysis with the helium ion microscope. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 26, 21032106 (2008).
30.Klingner, N., Heller, R., Hlawacek, G., von Borany, J., Notte, J., Huang, J., and Facsko, S.: Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry. Ultramicroscopy 162, 9197 (2016), doi: 10.1016/j.ultramic.2015.12.005.
31.Veligura, V., Hlawacek, G., van Gastel, R., Zandvliet, H.J.W., and Poelsema, B.: Channeling in helium ion microscopy: mapping of crystal orientation. Beilstein J. Nanotechnol. 3, 501 (2012).
32.Wirtz, T., Philipp, P., Audinot, J.N., Dowsett, D., and Eswara, S.: High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy. Nanotechnology 26, 434001 (2015).
33.Wirtz, T., Vanhove, N., Pillatsch, L., Dowsett, D., Sijbrandij, S., and Notte, J.: Towards secondary ion mass spectrometry on the helium ion microscope: an experimental and simulation based feasibility study with He+and Ne+bombardment. Appl. Phys. Lett. 101, 41601 (2012).
34.Dowsett, D. and Wirtz, T.: Co-registered in situ secondary electron and mass spectral imaging on the helium ion microscope demonstrated using lithium titanate and magnesium oxide nanoparticles. Anal. Chem. 89, 89578965 (2017).
35.Vollnhals, F., Audinot, J.-N., Wirtz, T., Mercier-Bonin, M., Fourquaux, I., Schroeppel, B., Kraushaar, U., Lev-Ram, V., Ellisman, M.H., and Eswara, S.: Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion. Anal. Chem. 89, 1070210710 (2017).
36.Gratia, P., Grancini, G., Audinot, J.-N., Jeanbourquin, X., Mosconi, E., Zimmermann, I., Dowsett, D., Lee, Y., Grätzel, M., and De Angelis, F.: Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 1582115824 (2016).
37.Gratia, P., Zimmermann, I., Schouwink, P., Yum, J.-H., Audinot, J.-N., Sivula, K., Wirtz, T., and Nazeeruddin, M.K.: The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 26862693 (2017), doi: 10.1021/acsenergylett.7b00981.
38.Everhart, T.E. and Thornley, R.F.M.: Wide-band detector for micro-microampere low-energy electron currents. J. Sci. Instrum. 37, 246 (1960).
39.Lai, S.Y., Brown, A., Vickerman, J.C., and Briggs, D.: The relationship between electron and ion induced secondary electron imaging: a review with new experimental observations. Surf. Interface Anal. 8, 93111 (1986).
40.Baragiola, R.A., Alonso, E. V, Ferron, J., and Oliva-Florio, A.: Ion-induced electron emission from clean metals. Surf. Sci. 90, 240255 (1979).
41.Ferron, J., Alonso, E. V, Baragiola, R.A., and Oliva-Florio, A.: Electron emission from molybdenum under ion bombardment. J. Phys. D. Appl. Phys. 14, 1707 (1981).
42.Hill, R. and Rahman, F.H.M.F.: Advances in helium ion microscopy. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 645, 96101 (2011).
43.Notte, J., Ward, B., Economou, N., Hill, R., Percival, R., Farkas, L., and McVey, S.: An introduction to the helium ion microscope. AIP Conf. Proc. 931, 489496 (2007).
44.Rodenburg, C., Viswanathan, P., Jepson, M.A.E., Liu, X., and Battaglia, G.: Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion. Ultramicroscopy 139, 1319 (2014).
45.Tsuji, K., Suleiman, H., Miner, J.H., Daley, J.M., Capen, D.E., Păunescu, T.G., and Lu, H.A.J.: Ultrastructural characterization of the glomerulopathy in Alport mice by helium ion scanning microscopy (HIM). Sci. Rep. 7, 11696 (2017).
46.Tsuji, K., Păunescu, T.G., Suleiman, H., Xie, D., Mamuya, F.A., Miner, J.H., and Lu, H.A.J.: Re-characterization of the glomerulopathy in CD2AP deficient mice by high-resolution helium ion scanning microscopy. Sci. Rep. 7, 8321 (2017).
47.Rice, W.L., Van Hoek, A.N., Păunescu, T.G., Huynh, C., Goetze, B., Singh, B., Scipioni, L., Stern, L.A., and Brown, D.: High resolution helium ion scanning microscopy of the rat kidney. PLoS ONE 8, e57051 (2013), doi: 10.1371/journal.pone.0057051.
48.Bazou, D., Behan, G., Reid, C., Boland, J.J., and Zhang, H.Z.: Imaging of human colon cancer cells using He-Ion scanning microscopy. J. Microsc. 242, 290294 (2011).
49.Rodenburg, C., Liu, X., Jepson, M.A.E., Zhou, Z., Rainforth, W.M., and Rodenburg, J.M.: The role of helium ion microscopy in the characterisation of complex three-dimensional nanostructures. Ultramicroscopy 110, 11781184 (2010).
50.Joy, D.C. and Joy, C.S.: Low voltage scanning electron microscopy. Micron 27, 247263 (1996).
51.Joy, D.C.: Control of charging in low-voltage SEM. Scanning 11, 14 (1989).
52.Jepson, M.A.E., Inkson, B.J., Rodenburg, C., and Bell, D.C.: Dopant contrast in the helium ion microscope. Europhys. Lett. 85, 46001 (2009).
53.Rodenburg, C., Jepson, M.A.E., Inkson, B.J., and Liu, X.: Dopant contrast in the helium ion microscope: contrast mechanism. J. Phys. Conf. Ser. 241, 12076 (2010).
54.Iberi, V., Vlassiouk, I., Zhang, X.G., Matola, B., Linn, A., Joy, D.C., and Rondinone, A.J.: Maskless lithography and in situ visualization of conductivity of graphene using helium ion microscopy. Sci. Rep. 5, 11952 (2015), doi: 10.1038/srep11952.
55.Petrov, Y.V., Vyvenko, O.F., and Bondarenko, A.S.: Scanning helium ion microscope: distribution of secondary electrons and ion channeling. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 4, 792795 (2010).
56.Mikhailovskii, V.Y., Petrov, Y. V, and Vyvenko, O.F.: Energy filtration of secondary and backscattered electrons by the method of the retarding potential in scanning electron and ion microscopy. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 9, 196202 (2015), doi: 10.1134/S1027451014060378.
57.Petrov, Y.V., and Vyvenko, O.F.: Secondary electron generation in the helium ion microscope: basics and imaging. In Helium Ion Microscopy, 1st ed.; Hlawacek, G., Gölzhäuser, A. eds.; Springer International Publishing, Cham, Switzerland, 2016, pp. 119146, doi: 10.1007/978-3-319-41990-9_5.
58.Ohya, K., Yamanaka, T., Inai, K., and Ishitani, T.: Comparison of secondary electron emission in helium ion microscope with gallium ion and electron microscopes. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267, 584589 (2009).
59.Suzuki, M.K.T., Sakai, Y., and Ichinokawa, T.: Material contrast of scanning electron and ion microscope images of metals. Micros. Today 16, 610 (2008).
60.Kumar, V., Schmidt, W.L., Schileo, G., Masters, R.C., Wong-Stringer, M., Sinclair, D.C., Reaney, I.M., Lidzey, D., and Rodenburg, C.: Nanoscale mapping of bromide segregation on the cross sections of complex hybrid perovskite photovoltaic films using secondary electron hyperspectral imaging in a scanning electron microscope. ACS Omega 2, 21262133 (2017).
61.Bruining, D.H.: 5 - Variation of Secondary Emission Yield Caused by The External Adsorption of Ions and Atoms. In Physics and Applications of Secondary Electron Emission, 2nd ed.; Pergamon Press, London, England, 1962, pp. 6977, doi: 10.1016/B978-0-08-009014-6.50008-9.
62.Willis, R.F., Fitton, B., and Skinner, D.K.: Study of carbon-fiber surfaces using Auger and secondary electron emission spectroscopy. J. Appl. Phys. 43, 44124419 (1972).
63.Joy, D.C., Prasad, M.S., and Meyer, H.M.: Experimental secondary electron spectra under SEM conditions. J. Microsc. 215, 7785 (2004).
64.Chung, M.S. and Everhart, T.E.: Simple calculation of energy distribution of low-energy secondary electrons emitted from metals under electron bombardment. J. Appl. Phys. 45, 707709 (1974).
65.Schönjahn, C., Humphreys, C.J., and Glick, M.: Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors. J. Appl. Phys. 92, 76677671 (2002), doi: 10.1063/1.1525862.
66.Kazemian, P., Mentink, S.A.M., Rodenburg, C., and Humphreys, C.J.: High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging. J. Appl. Phys. 100, 54901 (2006).
67.Jepson, M.A.E., Inkson, B.J., Liu, X., Scipioni, L., and Rodenburg, C.: Quantitative dopant contrast in the helium ion microscope. Europhys. Lett. 86, 26005 (2009).
68.O'Connell, R., Chen, Y., Zhang, H., Zhou, Y., Fox, D., Maguire, P., Wang, J.J., and Rodenburg, C.: Comparative study of image contrast in scanning electron microscope and helium ion microscope. J. Microsc. 268, 313320 (2017).
69.Griffin, B.J.: A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors—a further variable in scanning electron microscopy. Scanning 33, 162173 (2011).
70.Rodenburg, C., Jepson, M.A.E., Bosch, E.G.T., and Dapor, M.: Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping. Ultramicroscopy 110, 11851191 (2010).
71.Zhou, Y., Fox, D.S., Maguire, P., O'Connell, R., Masters, R., Rodenburg, C., Wu, H., Dapor, M., Chen, Y., and Zhang, H.: Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene. Sci. Rep. 6, 21045 (2016).
72.Kazemian, P., Mentink, S.A.M., Rodenburg, C., and Humphreys, C.J.: Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. Ultramicroscopy 107, 140150 (2007).
73.Dapor, M., Masters, R.C., Ross, I., Lidzey, D.G., Pearson, A., Abril, I., Garcia-Molina, R., Sharp, J., Unčovský, M., Vystavel, T., Mika, F., and Rodenburg, C.: “Secondary electron spectra of semi-crystalline polymers – A novel polymer characterisation tool?J. Electron Spectros. Relat. Phenomena 222, 95105 (2018), doi: 10.1016/j.elspec.2017.08.001.
74.Livengood, R.H., Greenzweig, Y., Liang, T., and Grumski, M.: Helium ion microscope invasiveness and imaging study for semiconductor applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 25, 25472552 (2007), doi: 10.1116/1.2794319.
75.Wan, Q., Abrams, K.J., Masters, R.C., Talari, A., Rehman, I.U., Claeyssens, F., Holland, C., and Rodenburg, C.: Mapping nanostructural variations in silk by secondary electron hyperspectral imaging. Adv. Mater. 29, 1703510 (2017), doi: 10.1002/adma.201703510.
76.Strauss, M.G., Naday, I., Sherman, I.S., and Zaluzec, N.J.: CCD-based parallel detection system for electron energy-loss spectroscopy and imaging. Ultramicroscopy 22, 117123 (1987), doi: 10.1016/0304-3991(87)90055-6.
77.Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., and Taheri, M.L.: Direct detection electron energy-loss spectroscopy: a method to push the limits of resolution and sensitivity. Sci. Rep. 7, 8243 (2017), doi: 10.1038/s41598-017-07709-4.
78.Khursheed, A.: Scanning Electron Microscope Optics and Spectrometers, 1st ed.; World Scientific Co Pte, Singapore, 2010.
79.Masters, R.C., Pearson, A.J., Glen, T.S., Sasam, F.-C., Li, L., Dapor, M., Donald, A.M., Lidzey, D.G., and Rodenburg, C.: Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nat. Commun. 6, (2015).
80.Abrams, K.J., Wan, Q., Stehling, N.A., Jiao, C., Talari, A.C.S., Rehman, I., and Rodenburg, C.: Nanoscale mapping of semi-crystalline polypropylene. Phys. Status Solidi 14, 1700153 (2017).
81.Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014), doi: 10.1038/ncomms6293.
82.Bell, D.C.: Contrast mechanisms and image formation in helium ion microscopy. Microsc. Microanal. 15, 147153 (2009).
83.Hasselkamp, D.: Kinetic electron emission from solid surfaces under ion bombardment. In Particle Induced Electron Emission II; Hasselkamp, D., Rothard, H., Groeneveld, K.-O., Kemmler, J., Varga, P., Winter, H. eds.; Springer, Berlin, Germany, 1992, pp. 195, doi: 10.1007/BFb0038298.
84.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P. V, Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038 (2013), doi: 10.1038/nmat3722.
85.Joe, H.-E., Lee, W.-S., Jun, M.B.G., Park, N.-C., and Min, B.-K.: Material interface detection based on secondary electron images for focused ion beam machining. Ultramicroscopy 184, 3743 (2018), doi: 10.1016/j.ultramic.2017.10.012.
86.Ferrón, J., Vidal, R.A., Bajales, N., Cristina, L., and Baragiola, R.A.: Role of HOPG density of empty electronic states above vacuum on electron emission spectra induced by ions and UV photons. Surf. Sci. 622, 8386 (2014).
87.Fox, D., Zhou, Y.B., O'Neill, A., Kumar, S., Wang, J.J., Coleman, J.N., Duesberg, G.S., Donegan, J.F., and Zhang, H.Z.: Helium ion microscopy of graphene: beam damage, image quality and edge contrast. Nanotechnology 24, 335702 (2013).
88.Barnett, C.J., Gowenlock, C.E., Welsby, K., Orbaek White, A., and Barron, A.R.: Spatial and contamination-dependent electrical properties of carbon nanotubes. Nano Lett. 18, 695700 (2017), doi: 10.1021/acs.nanolett.7b03390.
89.Hoffman, A.: Fine structure in the secondary electron emission spectrum as a spectroscopic tool for carbon surface characterization. Diam. Relat. Mater. 3, 691695 (1994).
90.Pearson, A.J., Boden, S.A., Bagnall, D.M., Lidzey, D.G., and Rodenburg, C.: Imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy. Nano Lett. 11, 42754281 (2011).

Related content

Powered by UNSILO

New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope

  • Nicola Stehling (a1), Robert Masters (a1), Yangbo Zhou (a2), Robert O'Connell (a3), Chris Holland (a1), Hongzhou Zhang (a3) and Cornelia Rodenburg (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.