Skip to main content
×
×
Home

Nitrogen-vacancy diamond sensor: novel diamond surfaces from ab initio simulations

  • Jyh-Pin Chou (a1) and Adam Gali (a1) (a2)
Abstract

The great properties of the paramagnetic nitrogen-vacancy (NV) color center in diamond predestine it for nanoscale sensor applications; however, these properties are often compromised when NV centers reside near diamond surface for sensing. Here we show in a mini review that first-principles calculations can characterize diamond surfaces and predict the ideal surface terminators to host NV sensors. We discuss technical issues on the modeling of NV centers close to diamond surfaces, and results on the most employed diamond (100) and the most promising (111) surfaces with various terminators involving hydrogen, oxygen, fluorine, and nitrogen are presented.

Copyright
Corresponding author
Address all correspondence to Adam Gali at gali.adam@wigner.mta.hu
References
Hide All
1.Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., de Walle, C.G.V., and Awschalom, D.D.: Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513 (2010).
2.Barry, J.F., Turner, M.J., Schloss, J.M., Glenn, D.R., Song, Y., Lukin, M.D., Park, H., and Walsworth, R.L.: Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA 113, 14133 (2016).
3.Schrand, A.M., Hens, S.A.C., and Shenderova, O.A.: Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18 (2009).
4.Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., and Yacoby, A.: A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320 (2012).
5.Le Sage, D., Arai, K., Glenn, D.R., DeVience, S.J., Pham, L.M., Rahn-Lee, L., Lukin, M.D., Yacoby, A., Komeili, A., and Walsworth, R.L.: Optical magnetic imaging of living cells. Nature 496, 486 (2013).
6.Shi, F., Zhang, Q., Wang, P., Sun, H., Wang, J., Rong, X., Chen, M., Ju, C., Reinhard, F., Chen, H., Wrachtrup, J., Wang, J., and Du, J.: Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135 (2015).
7.Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., and Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009).
8.Wrachtrup, J.: Defect center room-temperature quantum processors. Proc. Natl. Acad. Sci. USA 107, 9479 (2010).
9.Rondin, L., Tetienne, J.-P., Hingant, T., Roch, J.-F., Maletinsky, P., and Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).
10.Hong, S., Grinolds, M.S., Pham, L.M., Sage, D.L., Luan, L., Walsworth, R.L., and Yacoby, A.: Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155 (2013).
11.Steinert, S., Ziem, F., Hall, L.T., Zappe, A., Schweikert, M., Götz, N., Aird, A., Balasubramanian, G., Hollenberg, L., and Wrachtrup, J.: Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 2588 (2013).
12.Kolkowitz, S., Safira, A., High, A.A., Devlin, R.C., Choi, S., Unterreithmeier, Q.P., Patterson, D., Zibrov, A.S., Manucharyan, V.E., Park, H., and Lukin, M.D.: Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129 (2015).
13.DeVience, S.J., Pham, L.M., Lovchinsky, I., Sushkov, A.O., Bar-Gill, N., Belthangady, C., Casola, F., Corbett, M., Zhang, H., Lukin, M., Park, H., Yacoby, A., and Walsworth, R.L.: Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129 (2015).
14.Laraoui, A., Dolde, F., Burk, C., Reinhard, F., Wrachtrup, J., and Meriles, C.A.: High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 2685 (2013).
15.Müller, C., Kong, X., Cai, J.-M., Melentijević, K., Stacey, A., Markham, M., Twitchen, D., Isoya, J., Pezzagna, S., Meijer, J., Du, J.F., Plenio, M.B., Naydenov, B., McGuinness, L.P., and Jelezko, F.: Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703 (2014).
16.Chen, X. and Zhang, W.: Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734 (2017).
17.Cai, J., Retzker, A., Jelezko, F., and Plenio, M.B.: A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168 (2013).
18.Balents, L.: Spin liquids in frustrated magnets. Nature 464, 199 (2010).
19.Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H., and Schiffer, P.: Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303 (2006).
20.Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., and Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011).
21.Rondin, L., Dantelle, G., Slablab, A., Grosshans, F., Treussart, F., Bergonzo, P., Perruchas, S., Gacoin, T., Chaigneau, M., Chang, H.-C., Jacques, V., and Roch, J.-F.: Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010).
22.Rosskopf, T., Dussaux, A., Ohashi, K., Loretz, M., Schirhagl, R., Watanabe, H., Shikata, S., Itoh, K.M., and Degen, C.L.: Investigation of Surface Magnetic Noise by Shallow Spins in Diamond. Phys. Rev. Lett. 112, 147602 (2014).
23.Ofori-Okai, B.K., Pezzagna, S., Chang, K., Loretz, M., Schirhagl, R., Tao, Y., Moores, B.A., Groot-Berning, K., Meijer, J., and Degen, C.L.: Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).
24.Ohno, K., Heremans, F.J., Bassett, L.C., Myers, B.A., Toyli, D.M., Jayich, A.C.B., Palmstrøm, C.J., and Awschalom, D.D.: Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).
25.Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A.V., and Rabeau, J.R.: Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345 (2010).
26.Santori, C., Barclay, P.E., Fu, K.-M.C., and Beausoleil, R.G.: Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing. Phys. Rev. B 79, 125313 (2009).
27.Cui, J.B., Ristein, J., and Ley, L.: Dehydrogenation and the surface phase transition on diamond (111): Kinetics and electronic structure. Phys. Rev. B 59, 5847 (1999).
28.Petráková, V., Taylor, A., Kratochvílová, I., Fendrych, F., Vacík, J., Kučka, J., Štursa, J., Cígler, P., Ledvina, M., Fišerová, A., Kneppo, P., and Nesládek, M.: Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 22, 812 (2012).
29.Fu, K.-M.C., Santori, C., Barclay, P.E., and Beausoleil, R.G.: Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 96, 121907 (2010).
30.Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P.A., Sennour, M., Thorel, A., Börsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P.R., Jelezko, F., and Wrachtrup, J.: Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959 (2009).
31.Myers, B.A., Das, A., Dartiailh, M.C., Ohno, K., Awschalom, D.D., and Bleszynski Jayich, A.C.: Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
32.Romach, Y., Müller, C., Unden, T., Rogers, L.J., Isoda, T., Itoh, K.M., Markham, M., Stacey, A., Meijer, J., Pezzagna, S., Naydenov, B., McGuinness, L.P., Bar-Gill, N., and Jelezko, F.: Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601 (2015).
33.Bansal, R.C., Vastola, F.J., and Walker, P.L.: Kinetics of chemisorption of oxygen on diamond. Carbon 10, 443 (1972).
34.Osipov, V.Y., Shames, A.I., and Vul’, A.Y.: Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds. Phys. B: Condens. Matter 404, 4522 (2009).
35.Doherty, M.W., Dolde, F., Fedder, H., Jelezko, F., Wrachtrup, J., Manson, N.B., and Hollenberg, L.C.L.: Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).
36.Edmonds, A.M., D'Haenens-Johansson, U.F.S., Cruddace, R.J., Newton, M.E., Fu, K.-M.C., Santori, C., Beausoleil, R.G., Twitchen, D.J., and Markham, M.L.: Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys. Rev. B 86, 035201 (2012).
37.Lesik, M., Plays, T., Tallaire, A., Achard, J., Brinza, O., William, L., Chipaux, M., Toraille, L., Debuisschert, T., Gicquel, A., Roch, J.F., and Jacques, V.: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates. Diam. Relat. Mater. 56, 47 (2015).
38.Lesik, M., Tetienne, J.-P., Tallaire, A., Achard, J., Mille, V., Gicquel, A., Roch, J.-F., and Jacques, V.: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl. Phys. Lett. 104, 113107 (2014).
39.Atumi, M.K., Goss, J.P., Briddon, P.R., and Rayson, M.J.: Atomistic modeling of the polarization of nitrogen centers in diamond due to growth surface orientation. Phys. Rev. B 88, 245301 (2013).
40.Kaviani, M., Deák, P., Aradi, B., Frauenheim, T., Chou, J.-P., and Gali, A.: Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett. 14, 4772 (2014).
41.Chou, J.-P., Retzker, A., and Gali, A.: Nitrogen-terminated diamond (111) surface for room-temperature quantum sensing and simulation. Nano Lett. 17, 22942298 (2017).
42.Chu, Y., de Leon, N.P., Shields, B.J., Hausmann, B., Evans, R., Togan, E., Burek, M.J., Markham, M., Stacey, A., Zibrov, A.S., Yacoby, A., Twitchen, D.J., Loncar, M., Park, H., Maletinsky, P., and Lukin, M.D.: Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982 (2014).
43.Sushkov, A.O., Lovchinsky, I., Chisholm, N., Walsworth, R.L., Park, H., and Lukin, M.D.: Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).
44.Lovchinsky, I., Sushkov, A.O., Urbach, E., de Leon, N.P., Choi, S., Greve, K.D., Evans, R., Gertner, R., Bersin, E., Müller, C., McGuinness, L., Jelezko, F., Walsworth, R.L., Park, H., and Lukin, M.D.: Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836 (2016).
45.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
46.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
47.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
48.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).
49.Gali, A., Janzén, E., Deák, P., Kresse, G., and Kaxiras, E.: Theory of spin-conserving excitation of the N-V-center in diamond. Phys. Rev. Lett. 103, 186404 (2009).
50.Deák, P., Aradi, B., Frauenheim, T., Janzén, E., and Gali, A.: Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81, 153203 (2010).
51.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
52.Lenef, A. and Rand, S.C.: Electronic structure of the N-V center in diamond: theory. Phys. Rev. B 53, 13441 (1996).
53.Gali, A., Fyta, M., and Kaxiras, E.: Ab initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys. Rev. B 77, 155206 (2008).
54.Larsson, J.A. and Delaney, P.: Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B 77, 165201 (2008).
55.Nizovtsev, A.P., Kilin, S.Y., Pushkarchuk, A.L., Pushkarchuk, V.A., and Jelezko, F.: Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]H172 diamond cluster hosting nitrogen-vacancy center. New J. Phys. 16, 083014 (2014).
56.Deng, B., Zhang, R.Q., and Shi, X.Q.: New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond. Sci. Rep. 4, srep05144 (2014).
57.Alkauskas, A., Buckley, B.B., Awschalom, D.D., and de Walle, C.G.V.: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. New J. Phys. 16, 073026 (2014).
58.Loubser, J.H.N. and van Wyk, J.A.: Diamond Research (London) (Industrial Diamond Information Bureau, London, 1977), pp. 1115.
59.Ihm, J., Zunger, A., and Cohen, M.L.: Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys. 12, 4409 (1979).
60.Leslie, M. and Gillan, N.J.: The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J. Phys. C: Solid State Phys. 18, 973 (1985).
61.Makov, G. and Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014 (1995).
62.Castleton, C.W.M. and Mirbt, S.: Finite-size scaling as a cure for supercell approximation errors in calculations of neutral native defects in InP. Phys. Rev. B 70, 195202 (2004).
63.Dabo, I., Kozinsky, B., Singh-Miller, N.E., and Marzari, N.: Electrostatics in periodic boundary conditions and real-space corrections. Phys. Rev. B 77, 115139 (2008).
64.Lany, S. and Zunger, A.: Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008).
65.Freysoldt, C., Neugebauer, J., and Van de Walle, C.G.: Fully ab initio finite-size corrections for charged-defect Supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).
66.Hine, N.D.M., Frensch, K., Foulkes, W.M.C., and Finnis, M.W.: Supercell size scaling of density functional theory formation energies of charged defects. Phys. Rev. B 79, 024112 (2009).
67.Taylor, S.E. and Bruneval, F.: Understanding and correcting the spurious interactions in charged supercells. Phys. Rev. B 84, 075155 (2011).
68.Ramprasad, R., Zhu, H., Rinke, P., and Scheffler, M.: New perspective on formation energies and energy levels of point defects in nonmetals. Phys. Rev. Lett. 108, 066404 (2012).
69.Kumagai, Y. and Oba, F.: Electrostatics-based finite-size corrections for first-principles point defect calculations. Phys. Rev. B 89, 195205 (2014).
70.de Walle, C.G.V. and Neugebauer, J.: First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).
71.Castleton, C.W.M., Höglund, A., and Mirbt, S.: Managing the supercell approximation for charged defects in semiconductors: Finite-size scaling, charge correction factors, the band-gap problem, and the ab initio dielectric constant. Phys. Rev. B 73, 035215 (2006).
72.Komsa, H.-P. and Pasquarello, A.: Finite-size supercell correction for charged defects at surfaces and interfaces. Phys. Rev. Lett. 110, 095505 (2013).
73.Komsa, H.-P., Berseneva, N., Krasheninnikov, A.V., and Nieminen, R.M.: Charged point defects in the Flatland: accurate formation energy calculations in two-dimensional materials. Phys. Rev. X 4, 031044 (2014).
74.Lozovoi, A.Y. and Alavi, A.: Reconstruction of charged surfaces: general trends and a case study of Pt(110) and Au(110). Phys. Rev. B 68, 245416 (2003).
75.Noh, J.-Y., Kim, H., and Kim, Y.-S.: Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 89, 205417 (2014).
76.Hellström, M., Spångberg, D., Hermansson, K., and Broqvist, P.: Band-filling correction method for accurate adsorption energy calculations: a Cu/ZnO case study. J. Chem. Theory Comput. 9, 4673 (2013).
77.Richter, N.A., Sicolo, S., Levchenko, S.V., Sauer, J., and Scheffler, M.: Concentration of vacancies at metal-oxide surfaces: case study of MgO(100). Phys. Rev. Lett. 111, 045502 (2013).
78.Moll, N., Xu, Y., Hofmann, O.T., and Rinke, P.: Stabilization of semiconductor surfaces through bulk dopants. New J. Phys. 15, 083009 (2013).
79.Wei, S.-H. and Zunger, A.: Disorder effects on the density of states of the II–VI semiconductor alloys Hg0.5Cd0.5Te, Cd0.5Zn0.5Te, and Hg0.5Zn0.5Te. Phys. Rev. B 43, 1662 (1991).
80.Singh, D.J.: Electronic structure and doping in BaFe2As2 and LiFeAs: density functional calculations. Phys. Rev. B 78, 094511 (2008).
81.Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., and Scheffler, M.: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175 (2009).
82.Vinichenko, D., Sensoy, M.G., Friend, C.M., and Kaxiras, E.: Accurate formation energies of charged defects in solids: a systematic approach. Phys. Rev. B 95, 235310 (2017).
83.Pinto, H., Jones, R., Palmer, D.W., Goss, J.P., Tiwari, A.K., Briddon, P.R., Wright, N.G., Horsfall, A.B., Rayson, M.J., and Öberg, S.: First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys. Rev. B 86, 045313 (2012).
84.Lany, S. and Zunger, A.: Many-body GW calculation of the oxygen vacancy in ZnO. Phys. Rev. B 81, 113201 (2010).
85.Sque, S.J., Jones, R., and Briddon, P.R.: Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 73, 085313 (2006).
86.Zhao, S. and Larsson, K.: Theoretical study of the energetic stability and geometry of terminated and B-doped diamond (111) surfaces. J. Phys. Chem. C 118, 1944 (2014).
87.Hassan, M.M. and Larsson, K.: Effect of surface termination on diamond (100) surface electrochemistry. J. Phys. Chem. C 118, 22995 (2014).
88.Tiwari, A.K., Goss, J.P., Briddon, P.R., Horsfall, A.B., Wright, N.G., Jones, R., and Rayson, M.J.: Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films. Europhys. Lett. 108, 46005 (2014).
89.Song, Y. and Larsson, K.: A theoretical study of dye molecules adsorbed onto diamond (111) surfaces. Phys. Status Solidi A 213, 2105 (2016).
90.Mulliken, R.S.: The Rydberg states of molecules.1a parts I–V1b. J. Am. Chem. Soc. 86, 3183 (1964).
91.Vörös, M. and Gali, A.: Optical absorption of diamond nanocrystals from ab initio density-functional calculations. Phys. Rev. B 80, 161411 (2009).
92.Shockley, W.: On the surface states associated with a periodic potential. Phys. Rev. 56, 317 (1939).
93.Han, P., Antonov, D., Wrachtrup, J., and Bester, G.: Surface-bound states in nanodiamonds. Phys. Rev. B 95, 195428 (2017).
94.Hauf, M.V., Grotz, B., Naydenov, B., Dankerl, M., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., and Garrido, J.A.: Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B 83, 081304 (2011).
95.Pehrsson, P.E. and Mercer, T.W.: Oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 460, 49 (2000).
96.Derry, T.E., Makau, N.W., and Stampfl, C.: Oxygen adsorption on the (1 × 1) and (2 × 1) reconstructed C(111) surfaces: a density functional theory study. J. Phys. Condens. Matter 22, 265007 (2010).
97.de Theije, F.K., Reedijk, M.F., Arsic, J., van Enckevort, W.J.P., and Vlieg, E.: Atomic structure of diamond {111} surfaces etched in oxygen water vapor. Phys. Rev. B 64, 085403 (2001).
98.Kondo, T., Honda, K., Tryk, D.A., and Fujishima, A.: Covalent modification of single-crystal diamond electrode surfaces. J. Electrochem. Soc. 152, E18 (2005).
99.Havlik, J., Raabova, H., Gulka, M., Petrakova, V., Krecmarova, M., Masek, V., Lousa, P., Stursa, J., Boyen, H.-G., Nesladek, M., and Cigler, P.: Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 26, 4134 (2016).
100.Schvartzman, M. and Wind, S.J.: Plasma fluorination of diamond-like carbon surfaces: mechanism and application to nanoimprint lithography. Nanotechnology 20, 145306 (2009).
101.Rietwyk, K.J., Wong, S.L., Cao, L., O'Donnell, K.M., Ley, L., Wee, A.T.S., and Pakes, C.I.: Work function and electron affinity of the fluorine-terminated (100) diamond surface. Appl. Phys. Lett. 102, 091604 (2013).
102.Tiwari, A.K., Goss, J.P., Briddon, P.R., Wright, N.G., Horsfall, A.B., Jones, R., Pinto, H., and Rayson, M.J.: Calculated electron affinity and stability of halogen-terminated diamond. Phys. Rev. B 84, 245305 (2011).
103.Szilvási, T. and Gali, A.: Fluorine modification of the surface of diamondoids: a time-dependent density functional study. J. Phys. Chem. C 118, 4410 (2014).
104.Siyushev, P., Pinto, H., Vörös, M., Gali, A., Jelezko, F., and Wrachtrup, J.: Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett. 110, 167402 (2013).
105.Chaney, J.A. and Feigerle, C.S.: Characterization of chlorinated chemical vapor deposited and natural (100) diamond. Surf. Sci. 425, 245 (1999).
106.O'Donnell, K.M., Edmonds, M.T., Tadich, A., Thomsen, L., Stacey, A., Schenk, A., Pakes, C.I., and Ley, L.: Extremely high negative electron affinity of diamond via magnesium adsorption. Phys. Rev. B 92, 035303 (2015).
107.Schenk, A., Tadich, A., Sear, M., O'Donnell, K.M., Ley, L., Stacey, A., and Pakes, C.: Formation of a silicon terminated (100) diamond surface. Appl. Phys. Lett. 106, 191603 (2015).
108.Schenk, A.K., Tadich, A., Sear, M.J., Qi, D., Wee, A.T.S., Stacey, A., and Pakes, C.I.: The surface electronic structure of silicon terminated (100) diamond. Nanotechnology 27, 275201 (2016).
109.Stacey, A., O'Donnell, K.M., Chou, J.-P., Schenk, A., Tadich, A., Dontschuk, N., Cervenka, J., Pakes, C., Gali, A., Hoffman, A., and Prawer, S.: Nitrogen terminated diamond. Adv. Mater. Interfaces 2, 1500079 (2015).
110.Chandran, M., Shasha, M., Michaelson, S., and Hoffman, A.: Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: an in-situ x-ray photoemission spectroscopy and secondary electron emission studies. Appl. Phys. Lett. 107, 111602 (2015).
111.Chandran, M., Shasha, M., Michaelson, S., Akhvlediani, R., and Hoffman, A.: Incorporation of nitrogen into polycrystalline diamond surfaces by RF plasma nitridation process at different temperatures: Bonding configuration and thermal stability studies by in situ XPS and HREELS. Phys. Status Solidi A 212, 2487 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed