Skip to main content

Nonlinear nanocircuitry based on quantum tunneling effects

  • Pai-Yen Chen (a1), Khai Q. Le (a2) (a3) and Andrea Alù (a4)

Metatronics, or metamaterial-inspired optical nanocircuitry, has provided a powerful toolset to tailor and implement modular quasi-static circuit functionalities in the optical regime. So far, these concepts have been mostly limited to linear operations, while many of the relevant operations in integrated circuits require nonlinear responses. In this work, we introduce nonlinear infrared nanocircuit elements exploiting large quantum conductance driven by photon-assisted tunneling and enhanced by hybrid plasmonic nanojunctions. Based on these concepts, we present infrared lumped nanocircuit mixers and switches for second-harmonic generation, and wide-spectrum self-amplitude modulators based on nanorods.

Corresponding author
Address all correspondence to Pai-Yen Chen at and Andrea Alù at
Hide All
1. Engheta, N., Salandrino, A., and Alù, A.: Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).
2. Engheta, N.: Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698 (2007).
3. Sun, Y., Edwards, B., Alù, A., and Engheta, N.: Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nat. Mater. 11, 208212 (2012).
4. Caglayan, H., Hong, S.H., Edwards, B., Kagan, C.R., and Engheta, N.: Near infrared metatronic nanocircuits by design. Phys. Rev. Lett. 111, 073904 (2013).
5. Engheta, N.: From radio-frequency circuits to optical nanocircuits. IEEE Microw. Mag. 13, 100113 (2012).
6. Alù, A. and Engheta, N.: Optical metamaterials based on optical nanocircuits. Proc. IEEE 99, 1669–1681 (2011).
7. Alù, A. and Engheta, N.: Tuning the scattering response of optical nanoantennas with nanocircuit Loads. Nat. Photonics 2, 307 (2008).
8. Schnell, M., García-Etxarri, A., Huber, A.J., Crozier, K., Aizpurua, J., and Hillenbrand, R.: Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 3, 287291 (2009).
9. Liu, N., Wen, F., Zhao, Y., Wang, Y., Nordlander, P., Halas, N.J., and Alù, A.: Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 13, 142147 (2012).
10. Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., and Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328, 11351138 (2010).
11. Shi, J., Elias, S., Monticone, F., Wu, Y., Ratchford, D., Li, X., and Alù, A.: Modular assembly of optical nanocircuits. Nature Commun. 5, 3896 (2014).
12. Goldsmith, A.: Wireless Communications (Cambridge University Press, New York, 2005).
13. Chen, P.Y., Farhat, M., and Alù, A.: Bistable and self-tunable negative-index metamaterial at optical frequencies. Phys. Rev. Lett. 106, 105503 (2011).
14. Chen, P.Y. and Alù, A.: Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 11, 5514 (2011).
15. Chen, P.Y. and Alù, A.: Optical nanoantenna arrays loaded with nonlinear materials. Phys. Rev. B 82, 235405 (2010).
16. Chen, P.Y., Argyropoulos, C., and Alù, A.: Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics 1, 221 (2012).
17. Chen, P.Y. and Alù, A.: A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter. Nanotechnology 24, 455202 (2013).
18. Chettiar, U.K. and Engheta, N.: Optical frequency mixing through nanoantenna enhanced difference frequency generation: metatronic mixer. Phys. Rev. B 86, 075405 (2012).
19. Chen, P.Y., Argyropoulos, C., D'Aguanno, G., and Alù:, A. Enhanced second-harmonic generation by metasurface nanomixer and nanocavity. ACS Photonics 2, 1000–1006 (2015).
20. Noskov, R.E., Belov, P.A., and Kivshar, Y.S.: Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays. Phys. Rev. Lett. 108, 093901 (2012).
21. Maksymov, I.S., Miroshnichenko, A.E., and Kivshar, Y.S.: Actively tunable bistable optical Yagi-Uda nanoantenna. Opt. Express 20, 89298938 (2012).
22. Kauranen, M. and Zayats, A.V.: Nonlinear plasmonics. Nat. Photonics 6, 737748 (2012).
23. Harutyunyan, H., Volpe, G., Quidant, R., and Novotny, L.: Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012).
24. Mahmoud, A.M., Davoyan, A.R., and Engheta, N.: All-passive nonreciprocal metastructure. Nat. Commun. 6, 8359 (2015).
25. Chettiar, U.K. and Engheta, N.: Metatronic transistor amplifier. Phys. Rev. B 92, 165413 (2015).
26. Zuloaga, J., Prodan, E., and Nordlander, P.: Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887 (2009).
27. Marinica, D.C., Kazansky, A.K., Nordlander, P., Aizpurua, J., and Borisov, A.G.: Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333 (2012).
28. Hajisalem, G., Nezami, M.S., and Gordon, R.: The dark side of plasmonics. Nano Lett. 14, 6651 (2014).
29. Haus, J.W., de Ceglia, D., Vincenti, M.A., and Scalora, M.: Quantum conductivity for metal- insulator-metal nanostructures. J. Opt. Soc. Am. B 31, 259 (2014).
30. Haus, J.W., de Ceglia, D., Vincenti, M.A., and Scalora, M.: Nonlinear quantum tunneling effects in nano-plasmonic environments. J. Opt. Soc. Am. B 31, A13 (2014).
31. Brongersma, M.L., Halas, N.J., and Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 2534 (2015).
32. Chen, P.Y. and Farhat, M.: Modulatable optical radiators and metasurfaces based on quantum nanoantennas. Phys. Rev. B 91, 035426 (2015).
33. Grover, S. and Moddel, G.: Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovolt. 1, 78 (2011).
34. Johnson, P.B. and Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4307 (1972).
35. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4, 795808 (2010).
36. Refractive index database (
37. CST Microwave Studio (
38. Tien, P.K. and Gordon, J.P.: Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phy. Rev. 129, 647 (1963).
39. Truker, J.R.: Quantum limited detection in tunnel junction mixers. IEEE J. Quantum Electron 15, 1234 (1979).
40. Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).
41. Simmons, J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581 (1963).
42. Simmons, J.G.: Generalized thermal J-V characteristic for the electric tunnel effect. J. Appl. Phys. 35, 2655 (1964).
43. Grover, S. and Moddel, G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers. Solid State Electron. 67, 9499 (2012).
44. Boyd, R.W.: Nonlinear Optics, 3rd ed. (Academic Press, New York, 2008).
45. Argyropoulos, C., Chen, P.Y., D'Aguanno, G., Engheta, N., and Alù, A.: Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).
46. Argyropoulos, C., Chen, P.Y., Monticone, F., D'Aguanno, G., and Alù, A.: Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 108, 263905 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Chen supplementary material S1
Chen supplementary material

 PDF (340 KB)
340 KB
Supplementary materials

Chen supplementary material S1
Chen supplementary material

 PDF (340 KB)
340 KB
Supplementary materials

Chen supplementary material S1
Chen supplementary material

 PDF (340 KB)
340 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed