Skip to main content Accessibility help

On the identification of Sb2Se3 using Raman scattering

  • A. Shongalova (a1) (a2), M.R. Correia (a1), B. Vermang (a3) (a4) (a5), J.M.V. Cunha (a6), P.M.P. Salomé (a6) (a7) and P.A. Fernandes (a1) (a6) (a8)...


Robust evidences are presented showing that the Raman mode around 250 cm−1 in the Sb2Se3 thin films does not belong to this binary compound. The laser power density dependence of the Raman spectrum revealed the formation of Sb2O3 for high values of laser intensity power density excitation under normal atmospheric conditions. To complement this study, the Sb2Se3 films were characterized by x-ray diffraction during in situ annealing. Both these measurements showed that the Sb2Se3 compound can be replaced by Sb2O3. A heat-assisted chemical process explains these findings. Furthermore, Raman conditions required to perform precise measurements are described.


Corresponding author

Address all correspondence to P.A. Fernandes at


Hide All
1.Kim, H.C., Oh, T.S., and Hyun, D-B.: Thermoelectric properties of the p-type Bi2Te3–Sb2Te3–Sb2Se3 alloys fabricated by mechanical alloying and hot pressing. J. Phys. Chem. Solids 61, 743749 (2000).
2.Xue, M.-Z. and Fu, Z-W.: Pulsed laser deposited Sb2Se3 anode for lithium-ion batteries. J. Alloys Compd. 458, 351356 (2008).
3.Ma, J., Wang, Y., Wang, Y., Chen, Q., Lian, J., and Zheng, W.: Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties. J. Phys. Chem. C 113, 1358813592 (2009).
4.Luo, W., Calas, A., Tang, C., Li, F., Zhou, L., and Mai, L.: Ultralong Sb2Se3 nanowire-based free-standing membrane anode for lithium/sodium ion batteries. ACS Appl. Mater. Interfaces 8, 3521935226 (2016).
5.Wang, L., Li, D-B., Li, K., Chen, C., Deng, H-X., Gao, L., Zhao, Y., Jiang, F., Li, L., Huang, F., He, Y., Song, H., Niu, G., and Tang, J.: Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017).
6.Zhou, Y., Wang, L., Chen, S., Qin, S., Liu, X., Chen, J., Xue, D-J., Luo, M., Cao, Y., Cheng, Y., Sargent, E.H., and Tang, J.: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409415 (2015).
7.Chen, C., Zhao, Y., Lu, S., Li, K., Li, Y., Yang, B., Chen, W., Wang, L., Li, D., Deng, H., Yi, F., and Tang, J.: Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Adv. Energy. Mater. 7, 1700866 (2017).
8.Chen, C., Wang, L., Gao, L., Nam, D., Li, D., Li, K., Zhao, Y., Ge, C., Cheong, H., Liu, H., Song, H., and Tang, J.: 6.5% Certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2, 21252132 (2017).
9.Wen, X., He, Y., Chen, C., Liu, X., Wang, L., Yang, B., Leng, M., Song, H., Zeng, K., Li, D., Li, K., Gao, L., and Tang, J.: Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 172, 7481 (2017).
10.Torane, A.P. and Bhosale, C.H.: Preparation and characterization of electrodeposited Sb2Se3 thin films from non-aqueous media. J. Phys. Chem. Solids 63, 18491855 (2002).
11.Liu, X., Chen, J., Luo, M., Leng, M., Xia, Z., Zhou, Y., Qin, S., Xue, D-J., Lv, L., Huang, H., Niu, D., and Tang, J.: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6, 1068710695 (2014).
12.Dimitrievska, M., Gurieva, G., Xie, H., Carrete, A., Cabot, A., Saucedo, E., Pérez-Rodríguez, A., Schorr, S., and Izquierdo-Roca, V.: Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions. J. Alloys Compd. 628, 464470 (2015).
13.Insignares-Cuello, C., Oliva, F., Neuschitzer, M., Fontané, X., Broussillou, C., Goislard de Monsabert, T., Saucedo, E., Ruiz, C.M., Pérez-Rodríguez, A., and Izquierdo-Roca, V.: Advanced characterization of electrodeposition-based high efficiency solar cells: non-destructive Raman scattering quantitative assessment of the anion chemical composition in Cu(In,Ga)(S,Se)2 absorbers. Sol. Energy Mater. Sol. Cells 143, 212217 (2015).
14.Salomé, P., Fernandes, P., Leitão, J., Sousa, M., Teixeira, J.P., and da Cunha, A.F.: Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence. J. Mater. Sci. 49, 74257436 (2014).
15.Zhang, Y., Li, G., Zhang, B., and Zhang, L.: Synthesis and characterization of hollow Sb2Se3 nanospheres. Mater. Lett. 58, 22792282 (2004).
16.Zhou, Y., Leng, M., Xia, Z., Zhong, J., Song, H., Liu, X., Yang, B., Zhang, J., Chen, J., Zhou, K., Han, J., Cheng, Y., and Tang, J.: Solution-processed antimony selenide heterojunction solar cells. Adv. Energy. Mater. 4, 1301846 (2014).
17.Nagata, K., Ishibashi, K., and Miyamoto, Y.: Raman and infrared spectra of rhombohedral selenium. Jpn. J. Appl. Phys. 20, 463469 (1981).
18.Mestl, G., Ruiz, P., Delmon, B., and Knozinger, H.: Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. J. Phys. Chem. 98, 1127611282 (1994).
19.Ivanova, Z.G., Cernoskova, E., Vassilev, V.S., and Boycheva, S.V.: Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses. Mater. Lett. 57, 10251028 (2003).
20.Minaev, V.S., Timoshenkov, S.P., and Kalugin, V.V.: Structural and phase transformations in condensed selenium. J. Optoelectron. Adv. Mater. 7, 17171741 (2005).
21.Wang, X., Kunc, K., Loa, I., Schwarz, U., and Syassen, K.: Effect of pressure on the Raman modes of antimony. Phys. Rev. B 74, 134305 (2006).
22.Zhao, Y., Chua, K.T.E., Gan, C.K., Zhang, J., Peng, B., Peng, Z., and Xiong, Q.: Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 84, 205330 (2011).
23.Platzer-Björkman, C., Zabierowski, P., Pettersson, J., Törndahl, T., and Edoff, M.: Improved fill factor and open circuit voltage by crystalline selenium at the Cu(In,Ga)Se2 /buffer layer interface in thin film solar cells. Prog. Photovoltaics Res. Appl. 18, 249256 (2010).
24.SeJin, A., Ki Hyun, K., Jae Ho, Y., and Kyung Hoon, Y.: Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles. J. Appl. Phys. 105, 113533 (2009).
25.Li, Z., Chen, X., Zhu, H., Chen, J., Guo, Y., Zhang, C., Zhang, W., Niu, X., and Mai, Y.: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol. Energy Mater. Sol. Cells 161, 190196 (2017).
26.Weber, W.H., and Merlin, R.: Raman Scattering in Materials Science (Springer, 42, Berlin Heidelberg, 2000).
27.Bäuerle, D.: Laser Processing and Chemistry (Springer, Berlin Heidelberg, 2011). doi: 10.1007/978-3-642-17613-5.
28.Sereni, P., Musso, M., Knoll, P., Blaha, P., Schwarz, K., and Schmidt, G.: Polarization-dependent raman characterization of stibnite (Sb2S3). AIP Conf. Proc. 1267, 11311132 (2010).
29.Caracas, R. and Gonze, X.: First-principles study of the electronic properties of A2B3 minerals, with A = Bi,Sb and B = S,Se. Phys. Chem. Miner. 32, 295300 (2005).
30.Wang, J., Deng, Z., and Li, Y.: Synthesis and characterization of Sb2Se3 nanorods. Mater. Res. Bull. 37, 495502 (2002).
31.Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R.C., and Wang, Y.: Sb2Se3 under pressure. Sci. Rep. 3, 2665 (2013).
32.International Centre for Diffraction Data—Reference Code, 01-072-1184 (Orthorhombic Pbnm Sb2Se3), 01-072-1334 (cubic Fd-3m Sb2O3), 00-005-0562 (Rhombohedral R-3m Se6).

Related content

Powered by UNSILO

On the identification of Sb2Se3 using Raman scattering

  • A. Shongalova (a1) (a2), M.R. Correia (a1), B. Vermang (a3) (a4) (a5), J.M.V. Cunha (a6), P.M.P. Salomé (a6) (a7) and P.A. Fernandes (a1) (a6) (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.