Skip to main content

Optoplasmonic networks with morphology-dependent near- and far-field responses

  • Wonmi Ahn (a1), Xin Zhao (a1), Yan Hong (a1) and Björn M. Reinhard (a1)

Optoplasmonic networks consisting of dielectric microsphere resonators and plasmonic nanoantennas in a morphologically well-defined on-chip platform support unique electromagnetic signatures that are hybrids of photonic whispering gallery modes and localized surface plasmon resonances. Here we explore the dependence of their near- and far-field responses on the key structural parameters, including the size of the gold nanoparticles forming the plasmonic elements, the separation between the microspheres, and the geometry of the chain. The high degree of structural flexibility, which is experimentally accessible through template guided self-assembly approaches, makes these optoplasmonic structures a unique electromagnetic material for tuning spectral shapes and intensities.

Corresponding author
*Address all correspondence to Björn M. Reinhard at
Hide All
1. Hong, Y., Ahn, W., Boriskina, S.V., Zhao, X., and Reinhard, B.M.: Directed assembly of optoplasmonic hybrid materials with tunable photonic–plasmonic properties. J. Phys. Chem. Lett. 6, 2056 (2015).
2. Barth, M., Schietinger, S., Fischer, S., Becker, J., Nüsse, N., Aichele, T., Löchel, B., Sönnichsen, C., and Benson, O.: Nanoassembled plasmonic–photonic hybrid cavity for tailored light–matter coupling. Nano Lett. 10, 891 (2010).
3. Zhang, T., Callard, S., Jamois, C., Chevalier, C., Feng, D., and Belarouci, A.: Plasmonic–photonic crystal coupled nanolaser. Nanotechnology 25, 315201 (2014).
4. Chamanzar, M. and Adibi, A.: Hybrid nanoplasmonic–photonic resonators for efficient coupling of light to single plasmonic nanoresonators. Opt. Express 19, 22292 (2011).
5. Ahn, W., Boriskina, S.V., Hong, Y., and Reinhard, B.M.: Photonic–plasmonic mode coupling in on-chip integrated optoplasmonic molecules. ACS Nano 6, 951 (2012).
6. Ahn, W., Hong, Y., Boriskina, S.V., and Reinhard, B.M.: Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks. ACS Nano 7, 4470 (2013).
7. Boriskina, S.V. and Reinhard, B.M.: Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc. Natl. Acad. Sci. USA 108, 3147 (2011).
8. Boriskina, S.V. and Reinhard, B.M.: Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates. Opt. Express 19, 22305 (2011).
9. Ahn, W., Zhao, X., Hong, Y., and Reinhard, B.M.: Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly. Under Review (2015).
10. Haddadpour, A. and Yi, Y.: Metallic nanoparticle on micro ring resonator for bio optical detection and sensing. Biomed. Opt. Express 1, 378 (2010).
11. Xiao, Y.-F., Liu, Y.-C., Li, B.-B., Chen, Y.-L., Li, Y., and Gong, Q.: Strongly enhanced light–matter interaction in a hybrid photonic–plasmonic resonator. Phys. Rev. A 85, 031805 (2012).
12. Lu, Q., Chen, D., Wu, G., Peng, B., and Xu, J.: A hybrid plasmonic microresonator with high quality factor and small mode volume. J. Opt. 14, 125503 (2012).
13. Arnold, S., Dantham, V.R., Barbre, C., Garetz, B.A., and Fan, X.: Periodic plasmonic enhancing epitopes on a whispering gallery mode biosensor. Opt. Express 20, 26147 (2012).
14. White, I.M., Oveys, H., and Fan, X.: Increasing the enhancement of SERS with dielectric microsphere resonators. Spectroscopy 21, 36 (2006).
15. Shopova, S., Rajmangal, R., Holler, S., and Arnold, S.: Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104 (2011).
16. Santiago-Cordoba, M.A., Boriskina, S.V., Vollmer, F., and Demirel, M.C.: Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 99, 073701 (2011).
17. Shi, C., Choi, H.S., and Armani, A.M.: Optical microcavities with a thiol-functionalized gold nanoparticle polymer thin film coating. Appl. Phys. Lett. 100, 013305 (2012).
18. Astratov, V.N.: Fundamentals and applications of microsphere resonator circuits. In Photonic Microresonator Research and Applications, editor-in-chief Rhodes, W.T. (Springer, Atlanta, GA, 2010), pp. 423457.
19. Luk'yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., and Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010).
20. Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., and Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328, 1135 (2010).
21. Hentschel, M., Saliba, M., Vogelgesang, R., Giessen, H., Alivisatos, A.P., and Liu, N.: Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721 (2010).
22. Lassiter, J.B., Sobhani, H., Fan, J.A., Kundu, J., Capasso, F., Nordlander, P., and Halas, N.J.: Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184 (2010).
23. Gallinet, B., Siegfried, T., Sigg, H., Nordlander, P., and Martin, O.J.F.: Plasmonic radiance: probing structure at the Ångström scale with visible light. Nano Lett. 13, 497 (2013).
24. Mitsui, T., Wakayama, Y., Onodera, T., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T., and Oikawa, H.: Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres. Adv. Mater. 22, 3022 (2010).
25. Kapitonov, A.M. and Astratov, V.N.: Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett. 32, 409 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 11
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 147 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.