Skip to main content
×
Home

Organic electrochemical transistors as impedance biosensors

  • Gregório C. Faria (a1), Duc T. Duong (a2), Alberto Salleo (a2), Christos A. Polyzoidis (a3), Stergios Logothetidis (a3), Jonathan Rivnay (a4), Roisin Owens (a4) and George G. Malliaras (a4)...
Abstract
Abstract

Interfacing organic electrochemical transistors (OECTs) with biological systems holds considerable promise for building-sensitive biosensors and diagnostic tools. We present a simple model that describes the performance of biosensors in which an OECT is integrated with a biological barrier layer. Using experimentally derived parameters we explore the limits of sensitivity and find that it is dependent on the resistance of the barrier layer. This work provides guidelines on how to optimize biosensors in which OECTs transduce changes in the impedance of biological layers, including lipid bilayer membranes and confluent cell layers.

Copyright
Corresponding author
Address all correspondence to Alberto Salleo at asalleo@stanford.edu
References
Hide All
1.Berggren M. and Richter-Dahlfors A.: Organic bioelectronics. Adv. Mater. 19, 3201 (2007).
2.Rivnay J., Owens R.M., and Malliaras G.G.: The rise of organic bioelectronics. Chem. Mater. 26, 679 (2014).
3.Khodagholy D., Rivnay J., Sessolo M., Gurfinkel M., Leleux P., Jimison L.H., Stavrinidou E., Herve T., Sanaur S., Owens R.M., and Malliaras G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).
4.Kim S.H., Hong K., Xie W., Lee K.H., Zhang S., Lodge T.P., and Frisbie C.D.: Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822 (2013).
5.Nilsson D., Chen M., Kugler T., Remonen T., Armgarth M., and Berggren M.: Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51 (2002).
6.Toss H., Suspène C., Piro B., Yassar A., Crispin X., Kergoat L., Pham M.-C., and Berggren M.: On the mode of operation in electrolyte-gated thin film transistors based on different substituted polythiophenes. Organ. Electron. 15, 2420 (2014).
7.Rivnay J., Leleux P., Sessolo M., Khodagholy D., Herve T., Fiocchi M., and Malliaras G.G.: Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010 (2013).
8.Barnett M.W. and Larkman P.M.: The action potential. Pract. Neurol. 7, 192 (2007).
9.Gerich J.E., Meyer C., Woerle H.J., and Stumvoll M.: Renal gluconeogenesis. Diab. Care 24, 382 (2001).
10.Van Itallie C.M. and Anderson J.M.: Claudins and epithelial paracellular transport. Annu. Rev. Physiol. 68, 403 (2006).
11.Bernards D.A., Malliaras G.G., Toombes G.E.S., and Gruner S.M.: Gating of an organic transistor through a bilayer lipid membrane with ion channels. Appl. Phys. Lett. 89, 053505 (2006).
12.Jimison L.H., Tria S.A., Khodagholy D., Gurfinkel M., Lanzarini E., Hama A., Malliaras G.G., and Owens R.M.: Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919 (2012).
13.Tria S.A., Ramuz M., Huerta M., Leleux P., Rivnay J., Jimison L.H., Hama A., Malliaras G.G., and Owens R.M.: Dynamic monitoring of Salmonella typhimurium infection of polarized epithelia using organic transistors. Adv. Healthcare Mater. 3, 1053 (2014).
14.Tria S.A., Jimison L.H., Hama A., Bongo M., and Owens R.M.: Validation of the organic electrochemical transistor for in vitro toxicology. Biochim. Biophys. Acta 1830, 4381 (2013).
15.Tria S., Jimison L.H., Hama A., Bongo M., and Owens R.M.: Sensing of EGTA mediated barrier tissue disruption with an organic transistor. Biosensors 3, 44 (2013).
16.Kim N., Kee S., Lee S.H., Lee B.H., Kahng Y.H., Jo Y.-R., Kim B.-J., and Lee K.: Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26, 2268 (2014).
17.Ouyang J., Xu Q., Chu C.-W., Yang Y., Li G., and Shinar J.: On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45, 8443 (2004).
18.Steinem C., Janshoff A., Ulrich W.-P., Sieber M., and Galla H.-J.: Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim. Biophys. Acta 1279, 169 (1996).
19.Castellana E.T. and Cremer P.S.: Solid supported lipid bilayers: from biophysical studies to sensor design. Surface Sci. Rep. 61, 429 (2006).
20.Moore E.R., Fischer E.R., Mead D.J., and Hackstadt T.: The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9, 2130 (2008).
21.Montal M. and Mueller P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69, 3561 (1972).
22.Grasset E., Pinto M., Dussaulx E., Zweibaum A., and Desjeux J.-F.: Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am. Physiol. Soc. 247, 260 (1984).
23.Arthur J.M.: The MDCK cell line is made up of populations of cells with diverse resistive and transport properties. Tissue Cell 32, 446 (2000).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary Materials

Faria Supplementary Material
Supplementary Material

 Word (851 KB)
851 KB

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 84 *
Loading metrics...

Abstract views

Total abstract views: 477 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.