Skip to main content
×
Home
    • Aa
    • Aa

Polymer films of nanoscale thickness: linear chain and star-shaped macromolecular architectures

  • Peter F. Green (a1), Emmanouil Glynos (a2) and Bradley Frieberg (a3)
Abstract
Abstract

Applications of polymer thin films include functional coatings, flexible electronics, membranes and energy conversion. The physical properties of polymer films of nanoscale thicknesses typically differ from the bulk, due largely to entropic effects and to enthalpic interactions between the macromolecules and the external interfaces. Studies of the size-dependent physical properties of macromolecules have largely been devoted to linear chain polymers. In this Prospective, we review recent experiments and simulations that describe the structure and fascinating physical properties, from wetting to the glass transition, of star-shaped macromolecules. The properties of these molecules would render them more useful than their linear chain analogs, for some specific applications.

Copyright
Corresponding author
Address all correspondence to Peter F. Green atpfgreen@umich.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. J.L. Keddie , R.A.L. Jones , and R.A. Cory : Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 98, 219 (1994).

2. J.L. Keddie , R.A.L. Jones , and R.A. Cory : Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59 (1994).

3. J.A. Forrest and K. Dalnoki-Veress : The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167 (2001).

4. Z.H. Yang , Y. Fujii , F.K. Lee , C.H. Lam , and O.K.C. Tsui : Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676 (2010).

5. R.D. Priestley , C.J. Ellison , L.J. Broadbelt , and J.M. Torkelson : Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309, 456 (2005).

9. J.E.G. Lipson and S.T. Milner : Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B 72, 133 (2009).

10. D. Long and F. Lequeux : Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).

11. J.D. Mccoy and J.G. Curro : Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154 (2002).

12. J. Mittal , P. Shah , and T.M. Truskett : Using energy landscapes to predict the properties of thin films. J. Phys. Chem. B 108, 19769 (2004).

13. C.M. Stafford , C. Harrison , K.L. Beers , A. Karim , E.J. Amis , M.R. Vanlandingham , H.C. Kim , W. Volksen , R.D. Miller , and E.E. Simonyi : A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545 (2004).

14. P.A. O'connell , S.A. Hutcheson , and G.B. Mckenna : Creep behavior of ultra-thin polymer films. J. Polym. Sci. B: Polym. Phys. 46, 1952 (2008).

15. M.S. Mccaig and D.R. Paul : Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations. Polymer 41, 629 (2000).

16. M.S. Mccaig , D.R. Paul , and J.W. Barlow : Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part II. Mathematical model. Polymer 41, 639 (2000).

17. B.Y. Huang , E. Glynos , B. Frieberg , H.X. Yang , and P.F. Green : Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-Hexylthiophene) films. ACS Appl. Mater. Interfaces 4, 5204 (2012).

18. H.X. Yang , E. Glynos , B.Y. Huang , and P.F. Green : Out-of-plane carrier transport in conjugated polymer thin films: role of morphology. J. Phys. Chem. C 117, 9590 (2013).

19. B.X. Dong , B.Y. Huang , A. Tan , and P.F. Green : Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J. Phys. Chem. C 118, 17490 (2014).

22. M.M. Coleman and P.C. Painter : Hydrogen-bonded polymer blends. Prog. Polym. Sci. 20, 1 (1995).

24. J. Dudowicz and K.F. Freed : Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions3. Application to PS(D) PVME blends. Macromolecules 24, 5112 (1991).

25. G. Coulon , T.P. Russell , V.R. Deline , and P.F. Green : Surface-induced orientation of symmetric, Diblock copolymers—a secondary ion mass-spectrometry study. Macromolecules 22, 2581 (1989).

26. K.R. Shull : Mean-field theory of block copolymers—bulk melts, surfaces, and thin-films. Macromolecules 25, 2122 (1992).

27. A. Menelle , T.P. Russell , S.H. Anastasiadis , S.K. Satija , and C.F. Majkrzak : Ordering of thin Diblock copolymer films. Phys. Rev. Lett. 68, 67 (1992).

28. E. Glynos , A. Chremos , B. Frieberg , G. Sakellariou , and P.F. Green : Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 47, 1137 (2014).

29. E. Glynos , B. Frieberg , and P.F. Green : Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 107, 118303 (2011).

30. E. Glynos , B. Frieberg , H. Oh , M. Liu , D.W. Gidley , and P.F. Green : Role of molecular architecture on the vitrification of polymer thin films. Phys. Rev. Lett. 106, 128301 (2011).

31. E. Glynos , B. Frieberg , A. Chremos , G. Sakellariou , D.W. Gidley , and P.F. Green : Vitrification of thin polymer films: from linear chain to soft colloid-like behavior. Macromolecules 48, 2305 (2015).

32. B. Frieberg , E. Glynos , and P.F. Green : Structural relaxations of thin polymer films. Phys. Rev. Lett. 108, 268304 (2012).

33. B. Frieberg , E. Glynos , G. Sakellariou , and P.F. Green : Physical aging of star-shaped macromolecules. ACS Macro Lett. 1, 636 (2012).

34. S.F. Wang , Z. Jiang , S. Narayanan , and M.D. Foster : Dynamics of surface fluctuations on macrocyclic melts. Macromolecules 45, 6210 (2012).

35. S.F. Wang , S. Yang , J. Lee , B. Akgun , D.T. Wu , and M.D. Foster : Anomalous surface relaxations of branched-polymer melts. Phys. Rev. Lett. 111, 068303 (2013).

37. A. Chremos , E. Glynos , and P.F. Green : Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature. J. Chem. Phys. 142, 044901 (2015).

38. D.S. Pearson and E. Helfand : Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888 (1984).

39. P.G. Degennes and P. Pincus : scaling theory of polymer adsorption—proximal exponent. J. Phys. Lett. 44, L241 (1983).

42. T.K. Xia , O.Y. Jian , M.W. Ribarsky , and U. Landman : Interfacial alkane films. Phys. Rev. Lett. 69, 1967 (1992).

43. O. Borodin , G.D. Smith , R. Bandyopadhyaya , and E. Byutner : Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36, 7873 (2003).

44. K.C. Daoulas , V.A. Harmandaris , and V.G. Mavrantzas : Detailed atomistic simulation of a polymer melt/solid interface: structure, density, and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38, 5780 (2005).

45. D.N. Theodorou : Variable-density model of polymer melt solid interfaces—structure, adhesion tension, and surface forces. Macromolecules 22, 4589 (1989).

46. K.F. Mansfield and D.N. Theodorou : Molecular-dynamics simulation of a glassy polymer surface. Macromolecules 24, 6283 (1991).

47. D.M. Sussman , W.-S. Tung , K.I. Winey , K.S. Schweizer , and R.A. Riggleman : Entanglement Reduction and anisotropic chain and primitive path conformations in polymer melts under thin film and cylindrical confinement. Macromolecules 47, 6462 (2014).

48. C.H. Ye , C.G. Wiener , M. Tyagi , D. Uhrig , S.V. Orski , C.L. Soles , B.D. Vogt , and D.S. Simmons : Understanding the decreased segmental dynamics of supported thin polymer films reported by incoherent neutron scattering. Macromolecules 48, 801 (2015).

49. C. Soles , J. Douglas , W.L. Wu , and R. Dimeo : Incoherent neutron scattering and the dynamics of confined polycarbonate films. Phys. Rev. Lett. 88, 037401 (2002).

50. C.L. Soles , J.F. Douglas , and W.-L. Wu : Dynamics of thin polymer films: recent insights from incoherent neutron scattering. J. Polym. Sci. B: Polym. Phys. 42, 3218 (2004).

51. S. Napolitano , S. Capponi , and B. Vanroy : Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36, 61 (2013).

52. S. Napolitano and M. Wubbenhorst : The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2, 260 (2011).

53. C.L. Soles , J.F. Douglas , W.L. Wu , H.G. Peng , and D.W. Gidley : Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37, 2890 (2004).

55. S. Peter , H. Meyer , and J. Baschnagel : Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition. J. Chem. Phys. 131, 7 (2009).

56. P.Z. Hanakata , J.F. Douglas , and F.W. Starr : Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat. Commun. 5, 8 (2014).

57. Y. Chai , T. Salez , J.D. Mcgraw , M. Benzaquen , K. Dalnoki-Veress , E. Raphaël , and J.A. Forrest : A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994 (2014).

58. P.G. De Gennes : Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201 (2000).

60. C.J. Ellison and J.M. Torkelson : The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003).

61. Z. Fakhraai and J.A. Forrest : Measuring the surface dynamics of glassy polymers. Science 319, 600 (2008).

62. K. Paeng , S.F. Swallen , and M.D. Ediger : Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444 (2011).

63. J.E. Pye and C.B. Roth : Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys. Rev. Lett. 107, 5 (2011).

64. J.A. Torres , P.F. Nealey , and J.J. De Pablo : Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85, 3221 (2000).

65. F. Lange , P. Judeinstein , C. Franz , B. Hartmann-Azanza , S. Ok , M. Steinhart , and K. Saalwächter : Large-scale diffusion of entangled polymers along nanochannels. ACS Macro Lett. 4, 561 (2015).

66. D. Bonn , J. Eggers , J. Indekeu , J. Meunier , and E. Rolley : Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).

67. P.G. De Gennes , F. Brochard-Wyart , and D. Quere : Capillarity and Wetting Phenomena (Springer-Verlag, New York, Inc., New York, 2004).

68. P.G. Degennes : Wetting—statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).

69. L. Leger and J.F. Joanny : Liquid spreading. Rep. Prog. Phys. 55, 431 (1992).

70. T. Young : An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65 (1805).

71. A. Striolo and J.M. Prausnitz : Adsorption of branched homopolymers on a solid surface. J. Chem. Phys. 114, 8565 (2001).

72. V.S. Minnikanti and L.A. Archer : Entropic attraction of polymers toward surfaces and its relationship to surface tension. Macromolecules 39, 7718 (2006).

73. Z.Y. Qian , V.S. Minnikanti , B.B. Sauer , G.T. Dee , and L.A. Archer : Surface tension of symmetric star polymer melts. Macromolecules 41, 5007 (2008).

74. M.K. Kosmas : Ideal polymer-chains of various architectures at a surface. Macromolecules 23, 2061 (1990).

75. A. Chremos , P.J. Camp , E. Glynos , and V. Koutsos : Adsorption of star polymers: computer simulations. Soft Matter 6, 1483 (2010).

76. J.A. Forrest , K. Dalnokiveress , and J.R. Dutcher : Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705 (1997).

77. J.A. Forrest , K. Dalnokiveress , J.R. Stevens , and J.R. Dutcher : Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).

78. J.A. Forrest and J. Mattsson : Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53 (2000).

59. M.D. Ediger and J.A. Forrest : Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2013).

80. S. Kawana and R.a.L. Jones : Character of the glass transition in thin supported polymer films. Phys. Rev. E 63, 021401 (2001).

81. R. Priestley , M.K. Mundra , N.J. Barnett , L.J. Broadbelt , and J.M. Torkelson : Effects of nanoscale confinement and interfaces on the glass transition temperatures of a series of poly(n-methacrylate) films. Aust. J. Chem. 60, 765 (2007).

82. J.H. Kim , J. Jang , and W.C. Zin : Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17, 2703 (2001).

83. J.Q. Pham and P.F. Green : The glass transition of thin film polymer/polymer blends: interfacial interactions and confinement. J. Chem. Phys. 116, 5801 (2002).

84. J.Q. Pham and P.F. Green : Effective T-g of confined polymer–polymer mixtures. Influence of molecular size. Macromolecules 36, 1665 (2003).

85. J.A. Forrest : What can we learn about a dynamical length scale in glasses from measurements of surface mobility? J. Chem. Phys. 139, 084702 (2013).

86. A. Shavit and R.A. Riggleman : Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers. Macromolecules 46, 5044 (2013).

87. S. Mirigian and K.S. Schweizer : Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. J. Chem. Phys. 141, 5 (2014).

89. J. Zhao , S.L. Simon , and G.B. Mckenna : Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4, 6 (2013).

91. W.H. Wang : The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).

92. G.S. Fulcher : Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).

93. G. Tammann and W. Hesse : The dependency of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245 (1926).

95. M.L. Williams , R.F. Landel , and J.D. Ferry : Mechanical properties of substances of high molecular weight 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955).

96. G. Adam and J.H. Gibbs : On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).

97. M.D. Ediger : Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000).

98. L. Berthier and G. Biroli : Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).

99. F.W. Starr , J.F. Douglas , and S. Sastry : The relationship of dynamical heterogeneity to the Adam–Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 138, 12A541 (2013).

100. J.M. Hutchinson : Physical aging of polymers. Prog. Polym. Sci. 20, 703 (1995).

102. I.M. Hodge : Physical aging in polymer glasses. Science 267, 1945 (1995).

104. E.A. Baker , P. Rittigstein , J.M. Torkelson , and C.B. Roth : Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. B: Polym. Phys. 47, 2509 (2009).

105. A. Shavit and R.A. Riggleman : Physical aging, the local dynamics of glass-forming polymers under nanoscale confinement. J. Phys. Chem. B 118, 9096 (2014).

106. K. Paeng and M.D. Ediger : Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4-tert-butylstyrene), poly(alpha-methylstyrene), and poly(2-vinylpyridine). Macromolecules 44, 7034 (2011).

107. T.R. Bohme and J.J. De Pablo : Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures. J. Chem. Phys. 116, 9939 (2002).

108. K. Yoshimoto , T.S. Jain , P.F. Nealey , and J.J. De Pablo : Local dynamic mechanical properties in model free-standing polymer thin films. J. Chem. Phys. 122, 144712 (2005).

109. C.A. Clifford and M.P. Seah : Modelling of nanomechanical nanoindentation measurements using an AFM or nanoindenter for compliant layers on stiffer substrates. Nanotechnology 17, 5283 (2006).

110. C.A. Clifford and M.P. Seah : Nanoindentation measurement of Young's modulus for compliant layers on stiffer substrates including the effect of Poisson's ratios. Nanotechnology 20, 145708 (2009).

111. C.M. Stafford , B.D. Vogt , C. Harrison , D. Julthongpiput , and R. Huang : Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095 (2006).

112. J.M. Torres , C.M. Stafford , and B.D. Vogt : Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. ACS Nano 3, 2677 (2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 230 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.