Skip to main content

Polymer films of nanoscale thickness: linear chain and star-shaped macromolecular architectures

  • Peter F. Green (a1), Emmanouil Glynos (a2) and Bradley Frieberg (a3)

Applications of polymer thin films include functional coatings, flexible electronics, membranes and energy conversion. The physical properties of polymer films of nanoscale thicknesses typically differ from the bulk, due largely to entropic effects and to enthalpic interactions between the macromolecules and the external interfaces. Studies of the size-dependent physical properties of macromolecules have largely been devoted to linear chain polymers. In this Prospective, we review recent experiments and simulations that describe the structure and fascinating physical properties, from wetting to the glass transition, of star-shaped macromolecules. The properties of these molecules would render them more useful than their linear chain analogs, for some specific applications.

Corresponding author
Address all correspondence to Peter F. Green
Hide All
1.Keddie, J.L., Jones, R.A.L., and Cory, R.A.: Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 98, 219 (1994).
2.Keddie, J.L., Jones, R.A.L., and Cory, R.A.: Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59 (1994).
3.Forrest, J.A. and Dalnoki-Veress, K.: The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167 (2001).
4.Yang, Z.H., Fujii, Y., Lee, F.K., Lam, C.H., and Tsui, O.K.C.: Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676 (2010).
5.Priestley, R.D., Ellison, C.J., Broadbelt, L.J., and Torkelson, J.M.: Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309, 456 (2005).
6.Alcoutlabi, M. and Mckenna, G.B.: Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condens. Matter 17, R461 (2005).
7.Kanaya, T.: Glass transition, dynamics and heterogeneity of polymer thin films preface, in Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films, edited by Kanaya, T. (Springer-Verlag Berlin, Berlin, 2013) pp. V.
8.Baschnagel, J. and Varnik, F.: Computer simulations of supercooled polymer melts in the bulk and in-confined geometry. J. Phys.: Condens. Matter 17, R851 (2005).
9.Lipson, J.E.G. and Milner, S.T.: Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B 72, 133 (2009).
10.Long, D. and Lequeux, F.: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).
11.Mccoy, J.D. and Curro, J.G.: Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154 (2002).
12.Mittal, J., Shah, P., and Truskett, T.M.: Using energy landscapes to predict the properties of thin films. J. Phys. Chem. B 108, 19769 (2004).
13.Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Vanlandingham, M.R., Kim, H.C., Volksen, W., Miller, R.D., and Simonyi, E.E.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545 (2004).
14.O'connell, P.A., Hutcheson, S.A., and Mckenna, G.B.: Creep behavior of ultra-thin polymer films. J. Polym. Sci. B: Polym. Phys. 46, 1952 (2008).
15.Mccaig, M.S. and Paul, D.R.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations. Polymer 41, 629 (2000).
16.Mccaig, M.S., Paul, D.R., and Barlow, J.W.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part II. Mathematical model. Polymer 41, 639 (2000).
17.Huang, B.Y., Glynos, E., Frieberg, B., Yang, H.X., and Green, P.F.: Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-Hexylthiophene) films. ACS Appl. Mater. Interfaces 4, 5204 (2012).
18.Yang, H.X., Glynos, E., Huang, B.Y., and Green, P.F.: Out-of-plane carrier transport in conjugated polymer thin films: role of morphology. J. Phys. Chem. C 117, 9590 (2013).
19.Dong, B.X., Huang, B.Y., Tan, A., and Green, P.F.: Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J. Phys. Chem. C 118, 17490 (2014).
20.Bank, M., Thies, C., and Leffingw, J: Thermally induced phase separation of polystyrene-poly(vinyl methyl-ether) mixtures. J. Polym. Sci. B: Polym. Phys. 10, 1097 (1972).
21.Coleman, M.M., Graf, J.F., and Painter, P.C.: Specific Interactions and the Miscibility of Polymer Blends (Technomic Publishing, Lancaster, PA, 1991).
22.Coleman, M.M. and Painter, P.C.: Hydrogen-bonded polymer blends. Prog. Polym. Sci. 20, 1 (1995).
23.Dudowicz, J. and Freed, K.F.: Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions. 1. Lattice cluster theory of compressible systems. Macromolecules 24, 5076 (1991).
24.Dudowicz, J. and Freed, K.F.: Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions3. Application to PS(D) PVME blends. Macromolecules 24, 5112 (1991).
25.Coulon, G., Russell, T.P., Deline, V.R., and Green, P.F.: Surface-induced orientation of symmetric, Diblock copolymers—a secondary ion mass-spectrometry study. Macromolecules 22, 2581 (1989).
26.Shull, K.R.: Mean-field theory of block copolymers—bulk melts, surfaces, and thin-films. Macromolecules 25, 2122 (1992).
27.Menelle, A., Russell, T.P., Anastasiadis, S.H., Satija, S.K., and Majkrzak, C.F.: Ordering of thin Diblock copolymer films. Phys. Rev. Lett. 68, 67 (1992).
28.Glynos, E., Chremos, A., Frieberg, B., Sakellariou, G., and Green, P.F.: Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 47, 1137 (2014).
29.Glynos, E., Frieberg, B., and Green, P.F.: Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 107, 118303 (2011).
30.Glynos, E., Frieberg, B., Oh, H., Liu, M., Gidley, D.W., and Green, P.F.: Role of molecular architecture on the vitrification of polymer thin films. Phys. Rev. Lett. 106, 128301 (2011).
31.Glynos, E., Frieberg, B., Chremos, A., Sakellariou, G., Gidley, D.W., and Green, P.F.: Vitrification of thin polymer films: from linear chain to soft colloid-like behavior. Macromolecules 48, 2305 (2015).
32.Frieberg, B., Glynos, E., and Green, P.F.: Structural relaxations of thin polymer films. Phys. Rev. Lett. 108, 268304 (2012).
33.Frieberg, B., Glynos, E., Sakellariou, G., and Green, P.F.: Physical aging of star-shaped macromolecules. ACS Macro Lett. 1, 636 (2012).
34.Wang, S.F., Jiang, Z., Narayanan, S., and Foster, M.D.: Dynamics of surface fluctuations on macrocyclic melts. Macromolecules 45, 6210 (2012).
35.Wang, S.F., Yang, S., Lee, J., Akgun, B., Wu, D.T., and Foster, M.D.: Anomalous surface relaxations of branched-polymer melts. Phys. Rev. Lett. 111, 068303 (2013).
36.Vlassopoulos, D. and Fytas, G.: From polymers to colloids: engineering the dynamic properties of hairy particles, in High Solid Dispersions, edited by Cloitre, M. (Springer-Verlag, Berlin, 2010), pp. 1.
37.Chremos, A., Glynos, E., and Green, P.F.: Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature. J. Chem. Phys. 142, 044901 (2015).
38.Pearson, D.S. and Helfand, E.: Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888 (1984).
39.Degennes, P.G. and Pincus, P.: scaling theory of polymer adsorption—proximal exponent. J. Phys. Lett. 44, L241 (1983).
40.Rubinstein, M. and Colby, R.H.: Polymer Physics (Oxford University Press, New York, 2003).
41.Yoon, D.Y., Vacatello, M., and Smith, G.D.: Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, 1995).
42.Xia, T.K., Jian, O.Y., Ribarsky, M.W., and Landman, U.: Interfacial alkane films. Phys. Rev. Lett. 69, 1967 (1992).
43.Borodin, O., Smith, G.D., Bandyopadhyaya, R., and Byutner, E.: Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36, 7873 (2003).
44.Daoulas, K.C., Harmandaris, V.A., and Mavrantzas, V.G.: Detailed atomistic simulation of a polymer melt/solid interface: structure, density, and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38, 5780 (2005).
45.Theodorou, D.N.: Variable-density model of polymer melt solid interfaces—structure, adhesion tension, and surface forces. Macromolecules 22, 4589 (1989).
46.Mansfield, K.F. and Theodorou, D.N.: Molecular-dynamics simulation of a glassy polymer surface. Macromolecules 24, 6283 (1991).
47.Sussman, D.M., Tung, W.-S., Winey, K.I., Schweizer, K.S., and Riggleman, R.A.: Entanglement Reduction and anisotropic chain and primitive path conformations in polymer melts under thin film and cylindrical confinement. Macromolecules 47, 6462 (2014).
48.Ye, C.H., Wiener, C.G., Tyagi, M., Uhrig, D., Orski, S.V., Soles, C.L., Vogt, B.D., and Simmons, D.S.: Understanding the decreased segmental dynamics of supported thin polymer films reported by incoherent neutron scattering. Macromolecules 48, 801 (2015).
49.Soles, C., Douglas, J., Wu, W.L., and Dimeo, R.: Incoherent neutron scattering and the dynamics of confined polycarbonate films. Phys. Rev. Lett. 88, 037401 (2002).
50.Soles, C.L., Douglas, J.F., and Wu, W.-L.: Dynamics of thin polymer films: recent insights from incoherent neutron scattering. J. Polym. Sci. B: Polym. Phys. 42, 3218 (2004).
51.Napolitano, S., Capponi, S., and Vanroy, B.: Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36, 61 (2013).
52.Napolitano, S. and Wubbenhorst, M.: The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2, 260 (2011).
53.Soles, C.L., Douglas, J.F., Wu, W.L., Peng, H.G., and Gidley, D.W.: Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37, 2890 (2004).
54.Yelash, L., Virnau, P., Binder, K., and Paul, W.: Three-step decay of time correlations at polymer-solid interfaces. Eerophys. Lett. 98, 5 (2012).
55.Peter, S., Meyer, H., and Baschnagel, J.: Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition. J. Chem. Phys. 131, 7 (2009).
56.Hanakata, P.Z., Douglas, J.F., and Starr, F.W.: Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat. Commun. 5, 8 (2014).
57.Chai, Y., Salez, T., Mcgraw, J.D., Benzaquen, M., Dalnoki-Veress, K., Raphaël, E., and Forrest, J.A.: A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994 (2014).
58.De Gennes, P.G.: Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201 (2000).
59.Ediger, M.D. and Forrest, J.A.: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2013).
60.Ellison, C.J. and Torkelson, J.M.: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003).
61.Fakhraai, Z. and Forrest, J.A.: Measuring the surface dynamics of glassy polymers. Science 319, 600 (2008).
62.Paeng, K., Swallen, S.F., and Ediger, M.D.: Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444 (2011).
63.Pye, J.E. and Roth, C.B.: Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys. Rev. Lett. 107, 5 (2011).
64.Torres, J.A., Nealey, P.F., and De Pablo, J.J.: Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85, 3221 (2000).
65.Lange, F., Judeinstein, P., Franz, C., Hartmann-Azanza, B., Ok, S., Steinhart, M., and Saalwächter, K.: Large-scale diffusion of entangled polymers along nanochannels. ACS Macro Lett. 4, 561 (2015).
66.Bonn, D., Eggers, J., Indekeu, J., Meunier, J., and Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).
67.De Gennes, P.G., Brochard-Wyart, F., and Quere, D.: Capillarity and Wetting Phenomena (Springer-Verlag, New York, Inc., New York, 2004).
68.Degennes, P.G.: Wetting—statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).
69.Leger, L. and Joanny, J.F.: Liquid spreading. Rep. Prog. Phys. 55, 431 (1992).
70.Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65 (1805).
71.Striolo, A. and Prausnitz, J.M.: Adsorption of branched homopolymers on a solid surface. J. Chem. Phys. 114, 8565 (2001).
72.Minnikanti, V.S. and Archer, L.A.: Entropic attraction of polymers toward surfaces and its relationship to surface tension. Macromolecules 39, 7718 (2006).
73.Qian, Z.Y., Minnikanti, V.S., Sauer, B.B., Dee, G.T., and Archer, L.A.: Surface tension of symmetric star polymer melts. Macromolecules 41, 5007 (2008).
74.Kosmas, M.K.: Ideal polymer-chains of various architectures at a surface. Macromolecules 23, 2061 (1990).
75.Chremos, A., Camp, P.J., Glynos, E., and Koutsos, V.: Adsorption of star polymers: computer simulations. Soft Matter 6, 1483 (2010).
76.Forrest, J.A., Dalnokiveress, K., and Dutcher, J.R.: Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705 (1997).
77.Forrest, J.A., Dalnokiveress, K., Stevens, J.R., and Dutcher, J.R.: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).
78.Forrest, J.A. and Mattsson, J.: Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53 (2000).
79.Ediger, M.D. and Forrest, J.A.: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2014).
80.Kawana, S. and Jones, R.a.L.: Character of the glass transition in thin supported polymer films. Phys. Rev. E 63, 021401 (2001).
81.Priestley, R., Mundra, M.K., Barnett, N.J., Broadbelt, L.J., and Torkelson, J.M.: Effects of nanoscale confinement and interfaces on the glass transition temperatures of a series of poly(n-methacrylate) films. Aust. J. Chem. 60, 765 (2007).
82.Kim, J.H., Jang, J., and Zin, W.C.: Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17, 2703 (2001).
83.Pham, J.Q. and Green, P.F.: The glass transition of thin film polymer/polymer blends: interfacial interactions and confinement. J. Chem. Phys. 116, 5801 (2002).
84.Pham, J.Q. and Green, P.F.: Effective T-g of confined polymer–polymer mixtures. Influence of molecular size. Macromolecules 36, 1665 (2003).
85.Forrest, J.A.: What can we learn about a dynamical length scale in glasses from measurements of surface mobility? J. Chem. Phys. 139, 084702 (2013).
86.Shavit, A. and Riggleman, R.A.: Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers. Macromolecules 46, 5044 (2013).
87.Mirigian, S. and Schweizer, K.S.: Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. J. Chem. Phys. 141, 5 (2014).
88.Struik, L.C.E.: Physical Aging in Amorphous Polymers (Elsevier Scientific Publishing Company, Amsterdam, 1978).
89.Zhao, J., Simon, S.L., and Mckenna, G.B.: Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4, 6 (2013).
90.Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered-systems. J. Phys. I 2, 1705 (1992).
91.Wang, W.H.: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).
92.Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).
93.Tammann, G. and Hesse, W.: The dependency of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245 (1926).
94.Vogel, H.: The temperature dependence law of the viscosity of fluids. Phys. Z. 22, 645 (1921).
95.Williams, M.L., Landel, R.F., and Ferry, J.D.: Mechanical properties of substances of high molecular weight 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955).
96.Adam, G. and Gibbs, J.H.: On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).
97.Ediger, M.D.: Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000).
98.Berthier, L. and Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).
99.Starr, F.W., Douglas, J.F., and Sastry, S.: The relationship of dynamical heterogeneity to the Adam–Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 138, 12A541 (2013).
100.Hutchinson, J.M.: Physical aging of polymers. Prog. Polym. Sci. 20, 703 (1995).
101.Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., and Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses .2. Transparent multi-parameter theory. J. Polym. Sci. B: Polym. Phys. 17, 1097 (1979).
102.Hodge, I.M.: Physical aging in polymer glasses. Science 267, 1945 (1995).
103.Mckenna, G.B.: Mechanical rejuvenation in polymer glasses: fact or fallacy? J. Phys.: Condens. Matter 15, S737 (2003).
104.Baker, E.A., Rittigstein, P., Torkelson, J.M., and Roth, C.B.: Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. B: Polym. Phys. 47, 2509 (2009).
105.Shavit, A. and Riggleman, R.A.: Physical aging, the local dynamics of glass-forming polymers under nanoscale confinement. J. Phys. Chem. B 118, 9096 (2014).
106.Paeng, K. and Ediger, M.D.: Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4-tert-butylstyrene), poly(alpha-methylstyrene), and poly(2-vinylpyridine). Macromolecules 44, 7034 (2011).
107.Bohme, T.R. and De Pablo, J.J.: Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures. J. Chem. Phys. 116, 9939 (2002).
108.Yoshimoto, K., Jain, T.S., Nealey, P.F., and De Pablo, J.J.: Local dynamic mechanical properties in model free-standing polymer thin films. J. Chem. Phys. 122, 144712 (2005).
109.Clifford, C.A. and Seah, M.P.: Modelling of nanomechanical nanoindentation measurements using an AFM or nanoindenter for compliant layers on stiffer substrates. Nanotechnology 17, 5283 (2006).
110.Clifford, C.A. and Seah, M.P.: Nanoindentation measurement of Young's modulus for compliant layers on stiffer substrates including the effect of Poisson's ratios. Nanotechnology 20, 145708 (2009).
111.Stafford, C.M., Vogt, B.D., Harrison, C., Julthongpiput, D., and Huang, R.: Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095 (2006).
112.Torres, J.M., Stafford, C.M., and Vogt, B.D.: Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. ACS Nano 3, 2677 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 6
Total number of PDF views: 62 *
Loading metrics...

Abstract views

Total abstract views: 346 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.