Skip to main content

Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration

  • Radamés Ayala-Caminero (a1), Luis Pinzón-Herrera (a2), Carol A. Rivera Martinez (a1) and Jorge Almodovar (a1) (a2)

Understanding peripheral nerve repair requires the evaluation of three-dimensional (3D) structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered, including selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration
      Available formats
Corresponding author
Address all correspondence to J. Almodovar at
Hide All
1. Griffin J.W., Hogan M.V., Chhabra A.B., and Deal D.N.: Peripheral nerve repair and reconstruction. J. Bone Joint Surg. – Am. 95, 2144 (2013).
2. Resnick H.E., Stansberry K.B., Harris T.B., Tirivedi M., Smith K., Morgan P., and Vinik A.I.: Diabetes, peripheral neuropathy, and old age disability. Muscle Nerve 25, 43 (2002).
3. Grinsell D. and Keating C.P.: Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed. Res. Int. 2014, 698256 (2014).
4. National Institute of Neurological Disorders and Stroke. Peripheral Neuropathy Fact Sheet (Bethesda, Maryland, 2014).
5. Taylor C.A., Braza D., Rice J.B., and Dillingham T.: The incidence of peripheral nerve injury in extremity trauma. Am. J. Phys. Med. Rehabil. 87, 381 (2008).
6. Choi S.H., Kim Y.H., Hebisch M., Sliwinski C., Lee S., D'Avanzo C., Chen H., Hooli B., Asselin C., Muffat J., Klee J.B., Zhang C., Wainger B.J., Peitz M., Kovacs D.M., Woolf C.J., Wagner S.L., Tanzi R.E., and Kim D.Y.: A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274 (2014).
7. Alberio T., Lopiano L., and Fasano M.: Cellular models to investigate biochemical pathways in Parkinson's disease. FEBS J. 279, 1146 (2012).
8. Ravi M., Paramesh V., Kaviya S.R., Anuradha E., and Paul Solomon F.D.: 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230, 16 (2015).
9. The American Society for Cell Biology: 2014 ASCB/IFCB Meeting abstracts. Mol. Biol. Cell 25, 3987 (2014).
10. Kempermann G. and Gage F.H.: New nerve cells for the adult brain. Sci. Am. 280, 48 (1998).
11. Simons B.D. and Clevers H.: Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851 (2011).
12. Edmondson R., Broglie J.J., Adcock A.F., and Yang L.: Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207 (2014).
13. Behan B.L., DeWitt D.G., Bogdanowicz D.R., Koppes A.N., Bale S.S., and Thompson D.M.: Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments. J. Biomed. Mater. Res. A 96A, 46 (2011).
14. Mobasseri A., Faroni A., Minogue B.M., Downes S., Terenghi G., and Reid A.J.: Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng. A 21, 1152 (2015).
15. Tian L., Prabhakaran M.P., and Ramakrishna S.: Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen. Biomater. 2, 31 (2015).
16. Shane Tubbs R.J.S.R., Rizk E., Shoja M.M., Loukas M., and Barbaro N.: Nerves and Nerve Injuries: Vol 2: Pain, Treatment, Injury, Disease and Future Directions (Academic Press, London, United Kingdom, 2015).
17. Freeman D.: Top causes of chronic pain plus treatments to help overcome pain. (2010).
18. Hsieh F.-Y. and Hsu S.: 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis 11, 153 (2015).
19. Georgiou M., Bunting S.C.J., Davies H.A., Loughlin A.J., Golding J.P., and Phillips J.B.: Engineered neural tissue for peripheral nerve repair. Biomaterials 34, 7335 (2013).
20. Xu Y., Zhang Z., Chen X., Li R., Li D., and Feng S.: A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS ONE 11, 1 (2016).
21. Johnson B.N., Lancaster K.Z., Zhen G., He J., Gupta M.K., Kong Y.L., Engel E.A., Krick K.D., Ju A., Meng F., Enquist L.W., Jia X., and McAlpine M.C.: 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205 (2015).
22. Angius D., Wang H., Spinner R.J., Gutierrez-Cotto Y., Yaszemeski M.J., and Windebank A.J.: A systematic review of animal models used to study nerve regereration in tissue-engineered scaffolds. Biomaterials 33, 8034 (2013).
23. Evans G.R.D.: Challenges to nerve regeneration. Semin. Surg. Oncol. 19, 312 (2000).
24. Yongqiang Z.: Tissue engineering and peripheral nerve regeneration (III)—sciatic nerve regeneration with PDLLA nerve guide. Sci. China, Ser. B, Chem. 44, 419 (2001).
25. Griffith L.G. and Naughton G.: Tissue engineering—current challenges and expanding opportunities. Science 295, 1009 (2002).
26. Xm X., Guénard V., Kleitman N., and Mb B.: Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. 351, 1995 (1995).
27. Rajaram A., Chen X.-B., and Schreyer D.J.: Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Eng. B, Rev. 18, 454 (2012).
28. Walker J.M.: Methods in molecular biology. Life Sci. 531, 588 (2009).
29. Kiernan J. and Rajakumar R.: Barr's the Human Nervous System: An Anatomical Viewpoint (Williams and Wilkins, Lippincott, 2009).
30. Griffin M., Malahias M., Hindocha S., and Wasim K.S.: Peripheral nerve injury: principles for repair and regeneration. Open Orthop. J. 8, 199 (2014).
31. Huebner E.A. and Strittmatter S.M.: Axon regeneration in the peripheral and central nervous systems. In Cell Biol. Axon, edited by Koenig E. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 305360.
32. Griffin J.W., George R., and Ho T.: Macrophage systems in peripheral nerves. A review. J. Neuropathol. Exp. Neurol. 52, 553 (1993).
33. Burnett M.G. and Zager E.L.: Pathophysiology of peripheral nerve injury: a brief review. Neurosurg. Focus 16, 1 (2004).
34. Rutka J.T., Apodaca G., Stern R., and Rosenblum M.: The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155 (1988).
35. Carbonetto S.: The extracellular matrix of the nervous system. Trends Neurosci. 7, 382 (1984).
36. Geuna S., Raimondo S., Fregnan F., Haastert-Talini K., and Grothe C.: In vitro models for peripheral nerve regeneration. Eur. J. Neurosci. 43, 287 (2016).
37. Parikh P., Hao Y., Hosseinkhani M., Patil S.B., Huntley G.W., Tessier-Lavigne M., and Zou H.: Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc. Natl. Acad. Sci. USA 108, E99 (2011).
38. Yin Z.-S., Zhang H., Bo W., and Gao W.: Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR. Am. J. Neuroradiol. 31, 509 (2010).
39. Liu Z., Gao W., Wang Y., Zhang W., Liu H., and Li Z.: Neuregulin-1β regulates outgrowth of neurites and migration of neurofilament 200 neurons from dorsal root ganglial explants in vitro. Peptides 32, 1244 (2011).
40. Gattazzo F., Urciuolo A., and Bonaldo P.: Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506 (2014).
41. Subramanian A., Krishnan U.M., and Sethuraman S.: Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16, 108 (2009).
42. Koch D., Rosoff W.J., Jiang J., Geller H.M., and Urbach J.S.: Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys. J. 102, 452 (2012).
43. Lein P.J., Barnhart C.D., and Pessah I.N.: In vitro neurotoxicology. Methods Mol. Biol. 758, 1 (2004).
44. Rahmani A., Shoae-Hassani A., Keyhanvar P., Kheradmand D., and Darbandi-Azar A.: Dehydroepiandrosterone stimulates nerve growth factor and brain derived neurotrophic factor in cortical neurons. Adv. Pharmacol. Sci. 2013, 506191 (2013).
45. Greene L.A., Tischlert A.S., and Kuffler S.W.: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor (sympathetic neurons/cell culture/catecholamines/differentiation/neurites). Cell Biol. 73, 2424 (1976).
46. Hsu S.H., Kuo W.C., Chen Y.T., Yen C.T., Chen Y.F., Chen K.S., Huang W.C., and Cheng H.: New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater. 9, 6606 (2013).
47. Crapo P.M., Medberry C.J., Reing J.E., Tottey S., van der Merwe Y., Jones K.E., and Badylak S.F.: Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33, 3539 (2012).
48. Shi Z., Gao H., Feng J., Ding B., Cao X., Kuga S., Wang Y., Zhang L., and Cai J.: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chemie – Int. Ed. 53, 5380 (2014).
49. Li G., Zhang L., Wang C., Zhao X., Zhu C., Zheng Y., Wang Y., Zhao Y., and Yang Y.: Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydr. Polym. 101, 718 (2014).
50. Pateman C.J., Harding A.J., Glen A., Taylor C.S., Christmas C.R., Robinson P.P., Rimmer S., Boissonade F.M., Claeyssens F., and Haycock J.W.: Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49, 77 (2015).
51. Daud M.F.B., Pawar K.C., Claeyssens F., Ryan A.J., and Haycock J.W.: An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33, 5901 (2012).
52. Kim J.I., Hwang T.I., Aguilar L.E., Park C.H., and Kim C.S.: A controlled design of aligned and random nanofibers for 3D Bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci. Rep. 6, 23761 (2016).
53. Schuh C.M.A.P., Morton T.J., Banerjee A., Grasl C., Schima H., Schmidhammer R., Redl H., and Ruenzler D.: Activated Schwann cell-like cells on aligned fibrin-poly(lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration. Cells Tissues Org. 200, 287 (2015).
54. Wang A., Tang Z., Park I.-H., Zhu Y., Patel S., Daley G.Q., and Li S.: Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32, 5023 (2011).
55. Oliveira J.T., Mostacada K., de Lima S., and Martinez A.M.B.: Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. Int. Rev. Neurobiol. 108, 59 (2013).
56. Tohill M., Mantovani C., Wiberg M., and Terenghi G.: Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci. Lett. 362, 200 (2004).
57. Najafabadi M.M., Bayati V., Orazizadeh M., Hashemitabar M., and Absalan F.: Impact of cell density on differentiation efficiency of rat adipose-derived stem cells into Schwann-like cells. Int. J. Stem Cells 9, 213 (2016).
58. Higginson J.R. and Barnett S.C.: The culture of olfactory ensheathing cells (OECs)—a distinct glial cell type. Exp. Neurol. 229, 2 (2011).
59. Nazareth L., Lineburg K.E., Chuah M.I., Tello Velasquez J., Chehrehasa F., St John J.A., and Ekberg J.A.K.: Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J. Comp. Neurol. 523, 479 (2015).
60. Panni P., Ferguson I.A., Beacham I., Mackay-Sim A., Ekberg J.A.K., and St John J.A.: Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci. Lett. 539, 65 (2013).
61. Silva N.A., Cooke M.J., Tam R.Y., Sousa N., Salgado A.J., Reis R.L., and Shoichet M.S.: The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials 33, 6345 (2012).
62. Ruitenberg M.J., Vukovic J., Sarich J., Busfield S.J., and Plant G.W.: Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. J. Neurotrauma 23, 468 (2006).
63. Mokarram N., Merchant A., Mukhatyar V., Patel G., and Bellamkonda R.V.: Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33, 8793 (2012).
64. Niemi J.P., DeFrancesco-Lisowitz A., Roldán-Hernández L., Lindborg J.A., Mandell D., and Zigmond R.E.: A critical role for macrophages near axotomized neuronal cell bodies in stimulating nerve regeneration. J. Neurosci. 33, 16236 (2013).
65. Chen P., Piao X., and Bonaldo P.: Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 130, 605 (2015).
66. Parrinello S., Napoli I., Ribeiro S., Digby P.W., Fedorova M., Parkinson D.B., Doddrell R.D.S., Nakayama M., Adams R.H., and Lloyd A.C.: EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143, 145 (2010).
67. Cattin A.L., Burden J.J., Van Emmenis L., MacKenzie F.E., Hoving J.J.A., Garcia Calavia N., Guo Y., McLaughlin M., Rosenberg L.H., Quereda V., Jamecna D., Napoli I., Parrinello S., Enver T., Ruhrberg C., and Lloyd A.C.: Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 162, 1127 (2015).
68. Goers L., Freemont P., and Polizzi K.M.: Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11, 20140065 (2014).
69. Kraus D., Boyle V., Leibig N., Stark G.B., and Penna V.: The neuro-spheroid-a novel 3D in vitro model for peripheral nerve regeneration. J. Neurosci. Methods 246, 97 (2015).
70. Gonzalez-Perez F., Udina E., and Navarro X.: Extracellular matrix components in peripheral nerve regeneration. Int. Rev. Neurobiol. 108, 257 (2013).
71. Khaing Z.Z. and Schmidt C.E.: Advances in natural biomaterials for nerve tissue repair. Neurosci. Lett. 519, 103 (2012).
72. Parenteau-Bareil R., Gauvin R., and Berthod F.: Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 3, 1863 (2010).
73. Hu Y., Wu Y., Gou Z., Tao J., Zhang J., Liu Q., Kang T., Jiang S., Huang S., He J., Chen S., Du Y., Gou M., Faroni A., Mobasseri S.A., Kingham P.J., Reid A.J., Chhabra A., Ahlawat S., Belzberg A., Andreseik G., Xie J., Gu X., Ding F., Williams D.F., Bell J.H., Haycock J.W., Kehoe S., Zhang X.F., Boyd D., Koshy S.T., Ferrante T.C., Lewin S.A., Mooney D.J., Chang J.Y., Chen Y.S., Yue K., Qi C., Yan X., Huang C., Melerzanov A., Du Y., Gamez E., Nichol J.W., Suri S., Li Y., Kolar M.K., Kingham P.J., Heinemeyer O., Reimers C.D., Johnson B.N., Pateman C.J., Lin D., Murphy S.V., Atala A., Morrison R.J., Pati F., Zhu S., Hu N., Widgerow A.D., Salibian A.A., Lalezari S., Evans G.R., Khalifian S., Angius D., Huang C., Niu Y., Xu H., Hsueh Y.Y., He Y., Xue G.H., Fu J.Z., Park J.H., Jung J.W., Kang H.W., Cho D.W., Lee M., Dunn J.C., Wu B.M., Yao L., Bender M.D., Bennett J.M., Waddell R.L., Doctor J.S., Marra K.G., Yao L., Billiar K.L., Windebank A.J., Pandit A., Cheng B., Lu S., Fu X., Kokai L.E., Lin Y.C., Oyster N.M., Marra K.G., Chhabra A., Williams E.H., Wang K.C., Dellon A.L., Carrino J.A., Wolf M., Yamada K.M., Cukierman E., Liu G., Santiago L.Y., Clavijo-Alvarez J., Brayfield C., Rubin J.P., Marra K.G., Shen C.C., Yang Y.C., Liu B.S., Kingham P.J., di Summa P.G., Lee J.Y., Choi B., Wu B., Lee M., Tseng T.C., Hsu S.H., Bain J.R., Mackinnon S.E., and Hunter D.A.: 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci. Rep. 6, 32184 (2016).
74. Painter P.C. and Coleman M.M.: Essentials of Polymer Science and Engineering (DEStech Publications, Inc., Lancaster, Pennsylvania, 2009).
75. Brown R.A. and Phillips J.B.: Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. Int. Rev. Cytol. 262, 75 (2007).
76. Wenger M.P.E., Bozec L., Horton M.A., and Mesquida P.: Mechanical properties of collagen fibrils. Biophys. J. 93, 1255 (2007).
77. Suri S., Han L.-H., Zhang W., Singh A., Chen S., and Schmidt C.E.: Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 13, 983 (2011).
78. Vindigni V., Cortivo R., Iacobellis L., Abatangelo G., and Zavan B.: Hyaluronan benzyl ester as a scaffold for tissue engineering. Int. J. Mol. Sci. 10, 2972 (2009).
79. Guan S., Zhang X.-L., Lin X.-M., Liu T.-Q., Ma X.-H., and Cui Z.-F.: Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering. J. Biomater. Sci. Polym. Ed. 24, 999 (2013).
80. Kogan G., Šoltés L., Stern R., and Gemeiner P.: Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29, 17 (2007).
81. Falcone S.J., Palmeri D., Berg R.A., Galus R., Antiszko M., and Wlodarski P.: Biomedical applications of hyaluronic acid. Polysaccharides Drug Deliv. Pharm. Appl. 20, 155 (2006).
82. Collins M.N.: Hyaluronic Acid for Biomedical and Pharmaceutical Applications (Smithers Rapra Technology, Shropshire, United Kingdom, 2014).
83. Nomura H., Tator C.H., and Shoichet M.S.: Bioengineered strategies for spinal cord repair. J. Neurotrauma 234, 496 (2006).
84. Vepari C. and Kaplan D.L.: Silk as a biomaterial. Prog. Polym. Sci. 32, 991 (2007).
85. Liu B.-S., Yao C.-H., Hsu S.-H., Yeh T.-S., Chen Y.-S., and Kao S.-T.: A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration. J. Biomater. Appl. 19, 21 (2004).
86. Nie X., Deng M., Yang M., Liu L., Zhang Y., and Wen X.: Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells. Cell Biochem. Biophys. 68, 163 (2014).
87. Koudehi M.F., Fooladi A.A.I., Mansoori K., Jamalpoor Z., Amiri A., and Nourani M.R.: Preparation and evaluation of novel nano-bioglass/gelatin conduit for peripheral nerve regeneration. J. Mater. Sci. Mater. Med. 25, 363 (2014).
88. Ikeda M., Uemura T., Takamatsu K., Okada M., Kazuki K., Tabata Y., Ikada Y., and Nakamura H.: Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J. Biomed. Mater. Res. A 102, 1370 (2014).
89. Liu B.S.: Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair. J. Biomed. Mater. Res. A 87, 1092 (2008).
90. Chen Y., Chang J., Cheng C., Tsai F., Yao C., and Liu B.: An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. 26, 3911 (2005).
91. Arslantunali D., Dursun T., Yucel D., Hasirci N., and Hasirci V.: Peripheral nerve conduits: technology update. Med. Devices (Auckl). 7, 405 (2014).
92. Raafat D., Von Bargen K., Haas A., and Sahl H.G.: Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74, 3764 (2008).
93. Khor E. and Lim L.Y.: Implantable applications of chitin and chitosan. Biomaterials 24, 2339 (2003).
94. Chen S.L., Chen Z.G., Dai H.L., Ding J.X., Guo J.S., Han N., Jiang B.G., Jiang H.J., Li J., Li S.P., Li W.J., Liu J., Liu Y., Ma J.X., Peng J., Shen Y.D., Sun G.W., Tang P.F., Wang G.H., Wang X.H., Xiang L.B., Xie R.G., Xu J.G., Yu B., Zhang L.C., Zhang P.X., and Zhou S.L.: Repair, protection and regeneration of peripheral nerve injury. Neural Regen. Res. 10, 1777 (2015).
95. Yang Y., Gu X., Tan R., Hu W., and Wang X.: Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Biotechnol. Lett. 2003, 1793 (2004).
96. Nagao R.J., Lundy S., Khaing Z.Z., and Schmidt C.E.: Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model. Neurol. Res. 33, 600 (2011).
97. International Consensus: Acellular matrices for the treatment of wounds. An Expert Work. Gr. Rev. 1, 16 pp. (2010).
98. Hall S.: Axonal regeneration through acellular muscle grafts. J. Anat. 190, 57 (1997).
99. Donaldson J., Shi R., and Borgens R.: Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 50, 147 (2002).
100. Bittner G.D., Rokkappanavar K.K., and Peduzzi J.D.: Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords. Neural Regen. Res. 10, 1406 (2015).
101. Zhu J.: Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering, biomaterials. 31, 4639 (2010).
102. Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., and Filho R.M.: Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 30, 321 (2012).
103. Yang F., Murugan R., Ramakrishna S., Wang X., Ma Y.X., and Wang S.: Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891 (2004).
104. Wang H.B., Mullins M.E., Cregg J.M., Hurtado A., Oudega M., Trombley M.T., and Gilbert R.J.: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng. 6, 16001 (2009).
105. Guo C., Zhou L., and Lv J.: Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21, 449 (2013).
106. Makadia H.K., and Siegel S.J.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 3, 1377 (2011).
107. Lin K.-M., Shea J., Gale B.K., Sant H., Larrabee P., and Agarwal J.: Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth. J. Micromech. Microeng. 26, 45016 (2016).
108. Patrício T., Domingos M., Gloria A., and Bártolo P.: Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Proc. CIRP 5, 110 (2013).
109. Eshraghi S. and Das S.: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6, 2467 (2010).
110. Panseri S., Cunha C., Lowery J., Del Carro U., Taraballi F., Amadio S., Vescovi A., and Gelain F.: Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 8, 39 (2008).
111. Forciniti L., Ybarra J., Zaman M.H., and Schmidt C.E.: Schwann cell response on polypyrrole substrates upon electrical stimulation. Acta Biomater. 10, 2423 (2014).
112. Kang H.C. and Geckeler K.E.: Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. Polymer (Guildf). 41, 6931 (2000).
113. Alhosseini N., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A., Kargozar S., and Jalali N.: synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 7, 25 (2012).
114. Ye M., Mohanty P., and Ghosh G.: Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables. Mater. Sci. Eng. C 42, 289 (2014).
115. Rutkowski G.E. and Heath C.A.: Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol. Prog. 18, 373 (2002).
116. Daly W., Yao L., Zeugolis D., Windebank A., and Pandit A.: A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J. R. Soc. Interface 9, 202 (2012).
117. Bell J.H.A. and Haycock J.W.: Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng. B, Rev. 18, 116 (2012).
118. Fregnan F., Ciglieri E., Tos P., Crosio A., Ciardelli G., Ruini F., Tonda-Turo C., Geuna S., and Raimondo S.: Chitosan crosslinked flat scaffolds for peripheral nerve regeneration. Biomed. Mater. 11, 45010 (2016).
119. Hui Hsu S., Ho T.T., and Tseng T.C.: Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 33, 3639 (2012).
120. Busilacchi A., Gigante A., Mattioli-Belmonte M., Manzotti S., and Muzzarelli R.A.A.: Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr. Polym. 98, 665 (2013).
121. Meyer C., Stenberg L., Gonzalez-Perez F., Wrobel S., Ronchi G., Udina E., Suganuma S., Geuna S., Navarro X., Dahlin L.B., Grothe C., and Haastert-Talini K.: Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76, 33 (2016).
122. Stenberg L. and Dahlin L.B.: Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci. 15, 107 (2014).
123. Kruse A.L.D., Luebbers H.T., Grätz K.W., and Obwegeser J.A.: Factors influencing survival of free-flap in reconstruction for cancer of the head and neck: a literature review. Microsurgery 30, 242 (2010).
124. Wrobel S., Serra S.C., Ribeiro-Samy S., Sousa N., Heimann C., Barwig C., Grothe C., Salgado A.J., and Haastert-Talini K.: In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering. Tissue Eng. A 20, 2339 (2014).
125. Nectow A.R., Marra K.G., and Kaplan D.L.: Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng. B, Rev. 18, 40 (2012).
126. Uz M., Sharma A.D., Adhikari P., Sakaguchi D.S., and Mallapragada S.K.: Development of multifunctional films for peripheral nerve regeneration. Acta Biomater. 56, 141 (2017).
127. Torigoe K., Tanaka H.F., Ohkochi H., Miyasaka M., Yamanokuchi H., Yoshidad K., and Yoshida T.: Hyaluronan tetrasaccharide promotes regeneration of peripheral nerve: in vivo analysis by film model method. Brain Res. 1385, 87 (2011).
128. Lin Q. and Peng W.: 3D printing technologies for tissue engineering in ASME 2014. In Int. Design Engineering Technical Conf. & Computer Information in Engineering Conf. (2014).
129. Murphy S.V. and Atala A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).
130. He B.: Neural Engineering (Springer International Publishing, New York, 2013).
131. Langer R. and Vacanti J.: Tissue engineering. Science 260, 920 (1993).
132. El-Ayoubi R., Eliopoulos N., Diraddo R., Galipeau J., and Yousefi A.M.: Design and fabrication of 3D porous scaffolds to facilitate. Tissue Eng. A 14, 1037 (2008).
133. Zhang J., Zhao S., Zhu Y., Huang Y., Zhu M., Tao C., and Zhang C.: Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 10, 2269 (2014).
134. Koch L., Kuhn S., Sorg H., Gruene M., Schlie S., Gaebel R., Polchow B., Reimers K., Stoelting S., Ma N., Vogt P.M., Steinhoff G., and Chichkov B.: Laser printing of skin Cells and human stem cells. Tissue Eng. Part C Methods 16, 847 (2010).
135. Anderson J.M., Rodriguez A., and Chang D.T.: Foreign body reaction to biomaterials. Semin. Immunol. Press 20, 86 (2008).
136. Henstock J.R., Canham L.T., and Anderson S.I.: Silicon: the evolution of its use in biomaterials. Acta Biomater. 11, 17 (2015).
137. Yurie H., Ikeguchi R., Aoyama T., Kaizawa Y., Tajino J., Ito A., Ohta S., Oda H., Takeuchi H., Akieda S., Tsuji M., Nakayama K., and Matsuda S.: The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE 12, e0171448 (2017).
138. Danquah M.K. and Mahato R.I.: Emerging Trends in Cell and Gene Therapy (Springer International Publishing, New York, 2013).
139. Kapur T.A. and Shoichet M.S.: Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J. Biomed. Mater. Res. A 68, 235 (2004).
140. Soman P., Tobe B.T.D., Lee J.W., Winquist A.A.M., Singec I., Vecchio K.S., Snyder E.Y., Chen S., Hall A., Jolla L., Winquist A.A.M., Hall A., Jolla L., and Snyder E.Y.: Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomed. Microdevices 14, 829 (2013).
141. Ratner B., Hoffman A., Schoen F., and Lemons J.: Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, London, United Kingdom, 2013). Chapter II, pp. 1147.
142. Murphy C.M., Matsiko A., Haugh M.G., Gleeson J.P., and O'Brien F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. Mater. 11, 53 (2012).
143. Haugh M.G., Murphy C.M., and O'Brien F.J.: Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng. C, Methods 16, 887 (2010).
144. Davidenko N., Gibb T., Schuster C., Best S.M., Campbell J.J., Watson C.J., and Cameron R.E.: Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 8, 667 (2012).
145. Hortensius R.A. and Harley B.A.C.: The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials 34, 7645 (2013).
146. Her G.J., Wu H.C., Chen M.H., Chen M.Y., Chang S.C., and Wang T.W.: Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater. 9, 5170 (2013).
147. Kang P., Liao M., Wester M.R., Leeder J.S., and Pearce R.E.: The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features. Ratio 36, 490 (2010).
148. Niu X, Li X., Liu H., Zhou G., Feng Q., Cui F., and Fan Y.: Homogeneous chitosan/poly(L-Lactide) composite scaffolds prepared by emulsion freeze-drying. J. Biomater. Sci. Polym. Ed. 23, 391 (2012).
149. Zhang Z. and Cui H.: Biodegradability and biocompatibility study of poly(chitosan-g-lactic acid) scaffolds. Molecules 17, 3243 (2012).
150. Kozłowska J. and Sionkowska A.: Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Int. J. Biol. Macromol. 74, 397 (2015).
151. Gaudillere C. and Serra J.M.: Freeze-casting: fabrication of highly porous and hierarchical ceramic supports for energy applications. Boletín la Soc. Española Cerámica y Vidr. 55, 45 (2016).
152. Wegst U.G.K., Schecter M., Donius A.E., and Hunger P.M.: Biomaterials by freeze casting. Phil. Trans. R. Soc. A 368, 2099 (2010).
153. Francis N.L., Hunger P.M., Donius A.E., Riblett B.W., Zavaliangos A., Wegst U.G.K., and Wheatley M.A.: An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J. Biomed. Mater. Res. A 101, 3493 (2013).
154. Xie J., Liu W., Macewan M.R., Bridgman P.C., and Xia Y.: Neurite outgrowth on electrospun nano fibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate ACS Nano 8, 1878 (2015).
155. tae Kim Y., Haftel V.K., Kumar S., and Bellamkonda R.V.: The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29, 3117 (2008).
156. Huang Z.M., Zhang Y.Z., Kotaki M., and Ramakrishna S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).
157. Castilla-Casadiego D.A., Ramos-Avilez H.V., Herrera-Posada S., Calcagno B., Loyo L., Shipmon J., Acevedo A., Quintana A., and Almodovar J.: Engineering of a stable collagen nanofibrous scaffold with tunable fiber diameter, alignment, and mechanical properties. Macromol. Mater. Eng. 301, 1064 (2016).
158. Castilla-Casadiego D.A., Maldonado M., Sundaram P., and Almodovar J.: “Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Commun. 6, 402407 (2016).
159. Wang H.B., Mullins M.E., Cregg J.M., Hurtado A., Oudega M., Trombley M.T., and Gilbert R.J.: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng 6, 16001 (2009).
160. Corey J.M., Lin D.Y., Mycek K.B., Chen Q., Samuel S., Feldman E.L., and Martin D.C.: Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. A 83, 636 (2007).
161. Gnavi S., Fornasari B.E., Tonda-Turo C., Ciardelli G., Zanetti M., Geuna S., and Perroteau I.: The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Mater. Sci. Eng. C 48, 620 (2015).
162. Yao L., O'Brien N., Windebank A., and Pandit A.: Orienting neurite growth in electrospun fibrous neural conduits. J. Biomed. Mater. Res. B, Appl. Biomater. 90B, 483 (2009).
163. Das S., Sharma M., Saharia D., Sarma K.K., Sarma M.G., Borthakur B.B., and Bora U.: Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Data Br. 4, 315 (2015).
164. Zuidema J.M., Provenza C., Caliendo T., Dutz S., and Gilbert R.J.: Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS Chem. Neurosci. 6, 1781 (2015).
165. Sperling L.E., Reis K.P., Pozzobon L.G., Girardi C.S., and Pranke P.: Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J. Biomed. Mater. Res. A 105, 1333 (2017).
166. Schuh C.M.A.P., Morton T.J., Banerjee A., Grasl C., Schima H., Schmidhammer R., Redl H., and Ruenzler D.: Activated Schwann cell-Like cells on aligned fibrin-poly(lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration. Cells Tissues Organs. 200, 287 (2015).
167. Basu A., Reddy K., Doppalapudi S., Domb A.J., Khan W., and Peg P.L.A.: Poly (lactic acid) based hydrogels. Adv. Drug Deliv. Rev. 107, 192 (2016).
168. Peppas B.N.A., Hilt J.Z., Khademhosseini A., and Langer R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006).
169. Hilderbrand A.M., Ovadia E.M., Rehmann M.S., Kharkar P.M., Guo C., and Kloxin A.M.: Biomaterials for 4D stem cell culture. Curr. Opin. Solid State Mater. Sci. 20, 212 (2016).
170. Lin S.C.-Y., Wang Y., Wertheim D.F., and Coombes A.G.A.: Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair. Mater. Sci. Eng. C 73, 653 (2017).
171. Peppas N.A., Bures P., Leobandung W., and Ichikawa H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27 (2000).
172. Lee K.Y. and Mooney D.J.: Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106 (2012).
173. Tonda-Turo I.P.C., Gnavi S., Ruini F., Gambarotta G., Gioffredi E., Chiono V., and Ciardelli G.: Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Tissue Eng. Regen. Med. 11, 197 (2014).
174. Albrecht D.R., Underhill G.H., Wassermann T.B., Sah R.L., and Bhatia S.N.: Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3, 369 (2006).
175. Lin R.Z. and Chang H.Y.: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172 (2008).
176. Cargill R.S., Dee K.C., and Malcolm S.: An assessment of the strength of NG108-15 cell adhesion to chemically modified surfaces. Biomaterials 20, 2417 (1999).
177. Korff T. and Augustin H.G.: Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. – PubMed – NCBI. J. Cell Biol. 143, 1341 (1998).
178. Koppes A.N., Keating K.W., McGregor A.L., Koppes R.A., Kearns K.R., Ziemba A.M., McKay C.A., Zuidema J.M., Rivet C.J., Gilbert R.J., and Thompson D.M.: Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomater. 39, 34 (2016).
179. Cunha C., Panseri S., Villa O., Silva D., and Gelain F.: 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int. J. Nanomed. 6, 943 (2011).
180. Das K.P., Freudenrich T.M., and Mundy W.R.: Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol. Teratol. 26, 397 (2004).
181. Wu Y., Wang L., Guo B., Shao Y., and Ma P.X.: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87, 18 (2016).
182. Gao R., Xiu W., Zhang L., Zang R., Yang L., Wang C., Wang M., Wang M., Yi L., Tang Y., Gao Y., Wang H., Xi J., Liu W., Wang Y., Wen X., Yu Y., Zhang Y., Chen L., Chen J., and Gao S.: Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state. Biomaterials 119, 53 (2017).
183. Boeshore K.L., Schreiber R.C., Vaccariello S.A., Sachs H.H., Salazar R., Lee J., Ratan R.R., Leahy P., and Zigmond R.E.: Novel changes in gene expression following axotomy of a sympathetic ganglion: A microarray analysis. J. Neurobiol. 59, 216 (2004).
184. Ragelle H., Naba A., Larson B.L., Zhou F., Prijić M., Whittaker C.A., Del Rosario A., Langer R., Hynes R.O., and Anderson D.G.: Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 128, 147 (2017).
185. Dumont C.M., Karande P., and Thompson D.M.: Rapid assessment of migration and proliferation: a novel 3D high-throughput platform for rational and combinatorial screening of tissue-specific biomaterials. Tissue Eng. C, Methods 20, 620 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 33
Total number of PDF views: 214 *
Loading metrics...

Abstract views

Total abstract views: 508 *
Loading metrics...

* Views captured on Cambridge Core between 3rd October 2017 - 17th January 2018. This data will be updated every 24 hours.