Skip to main content
×
×
Home

Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones

  • Basamat S. Shaheen (a1) (a2), Timothy C. Davenport (a2), Hanadi G. Salem (a1), Sossina M. Haile (a2) and Nageh K. Allam (a1) (a2)...
Abstract

We demonstrate the fabrication by anodization of niobium oxide microcones, several microns long, from aqueous solutions of 1 wt% hydrogen fluoride (HF) with varied sodium fluoride (NaF) concentration (0–1 M). Raman spectroscopy and x-ray diffractometer analysis revealed the as-grown microcones to be crystalline Nb2O5−x with preferred (1 0 0) and (0 1 0) orientations. The overall Nb2O5−x formation rate increased with the increasing NaF concentration, and structures as tall as 20 μm were achieved in just 20 min of anodization at 1 M NaF. Rapid formation of niobia microcones was even observed in the absence of HF at this NaF concentration. Photocatalytic activity for water oxidation was highest for microcones grown under the highest NaF concentration.

Copyright
Corresponding author
Address all correspondence to N. K. Allam atnageh.allam@aucegyt.edu
References
Hide All
1.Wachs, I.E., Jehng, J.M., Deo, G., Hu, H., and Arora, N.: Redox properties of niobium oxide catalysts. Catal. Today 28, 199 (1996).
2.Rani, R.A., Zoolfakar, A.S., O'Mullane, A.P., Austin, M.W., and Kalantar-Zadeh, K.: Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683 (2014).
3.Nowak, I. and Ziolek, M.: Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem. Rev. 99, 3603 (1999).
4.Yoo, J.E., Park, J., Cha, G., and Choi, J.: Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications. Thin Solid Films 531, 583 (2013).
5.Nagahara, K., Sakairi, M., Takahashi, H., Matsumoto, K., Takayama, K., and Oda, Y.: Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim. Acta 52, 2134 (2007).
6.Tzvetkov, B., Bojinov, M., and Girginov, A.: Nanoporous oxide formation by anodic oxidation of Nb in sulphate-fluoride electrolytes. J. Solid State Electrochem. 13, 1215 (2009).
7.Lee, K., Yang, Y., Yang, M., and Schmuki, P.: Formation of highly ordered nanochannel Nb oxide by self-organizing anodization. Chem.: Eur. J. 18, 9521 (2012).
8.Ou, J.Z., Rani, R.A., Ham, M.H., Field, M.R., Zhang, Y., Zheng, H., Reece, P., Zhuiykov, S., Sriram, S., Bhaskaran, M., Kaner, R.B., and Kalantar-Zadeh, K.: Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 6, 4045 (2012).
9.Karlinsey, R.L.: Preparation of self-organized niobium oxide microstructures via potentiostatic anodization. Electrochem. Commun. 7, 1190 (2005).
10.Karlinsey, R.L.: Self-assembled Nb2O5 microcones with tailored crystallinity. J. Mater. Sci. 41, 5017 (2006).
11.Yang, S., Habazaki, H., Fujii, T., Aoki, Y., Skeldon, P., and Thompson, G.E.: Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes. Electrochim. Acta 56, 7446 (2011).
12.Oikawa, Y., Minami, T., Mayama, H., Tsujii, K., Fushimi, K., Aoki, Y., Skeldon, P., Thompson, G.E., and Habazaki, H.: Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability. Acta Mater. 57, 3941 (2009).
13.Jeong, B.Y. and Jung, E.H.: Micro-mountain and nano-forest pancake structure of Nb2O5 with surface nanowires for dye-sensitized solar cells. Met. Mater. Int. 19, 617 (2013).
14.Karlinsey, R.L. and Yi, K.: Self-assembly and bioactive response of a crystalline metal oxide in a simulated blood fluid. J. Mater. Sci.: Mater. Med. 19, 1349 (2008).
15.Yao, D.D., Rani, R.A., O'Mullane, A.P., Kalantar-zadeh, K., and Ou, J.Z.: High performance electrochromic devices based on anodized nanoporous Nb2O5. J. Phys. Chem. C 118, 476 (2014).
16.Kato, K. and Tamura, S.: Crystal-structure of T-Nb2O5. Acta Crystallogr. B : Struct. Sci. 31, 673 (1975).
17.Tamura, S., Kato, K., and Goto, M.: Single-crystals of T-Nb2O5 obtained by slow cooling method under high-pressures. Z. Anorg. Allg. Chem. 410, 313 (1974).
18.Kobayashi, Y., Hata, H., Salama, M., and Mallouk, T.E.: Scrolled sheet precursor route to niobium and tantalum oxide nanotubes. Nano Lett. 7, 2142 (2007).
19.Murakami, Y., Wada, Y., and Morikawa, A.: Catalytic activity of nonstoichiomeric niobium oxide with controlled composition, NbO2.488–2.500, for butene isomerization. Bull. Chem. Soc. Jpn. 61, 2747 (1988).
20.Patterson, A.L.: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).
21.Soares, M.R.N., Leite, S., Nico, C., Peres, M., Fernandes, A.J.S., Graca, M.P.F., Matos, M., Monteiro, R., Monteiro, T., and Costa, F.M.: Effect of processing method on physical properties of Nb2O5. J. Eur. Ceram. Soc. 31, 501 (2011).
22.Brayner, R. and Bozon-Verduraz, F.: Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Phys. Chem. Chem. Phys. 5, 1457 (2003).
23.Hardcastle, F.D. and Wachs, I.E.: Determination of molybdenum oxygen bond distances and bond orders by Raman-spectroscopy. J. Raman Spectrosc. 21, 683 (1990).
24.Lim, J.H., Park, G., and Choi, J.: Synthesis of niobium oxide nanopowders by field-crystallization-assisted anodization. Curr. Appl. Phys. 12, 155 (2012).
25.Habazaki, H., Ogasawara, T., Konno, H., Shimizu, K., Nagata, S., Skeldon, P., and Thompson, G.E.: Field crystallization of anodic niobia. Corros. Sci. 49, 580 (2007).
26.Jackson, J.F. and Hendy, J.C.: The use of niobium as an anode material in liquid filled electrolytic capacitors. Electrocomp. Sci. Technol. 1, 27 (1974).
27.Zhao, J.L., Wang, X.X., Xu, R.Q., Mi, Y.J., and Li, Y.X.: Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem. Solid State Lett. 10, C31 (2007).
28.Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L.: The NBS tables of chemical and thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Supplement 2, p. 38 and 207 (1982).
29.Rani, R.A., Zoolfakar, A.S., Ou, J.Z., Ab Kadir, R., Nili, H., Latham, K., Sriram, S., Bhaskaran, M., Zhuiykov, S., Kaner, R.B., and Kalantar-Zadeh, K.: Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chem. Commun. 49, 6349 (2013).
30.Ruff, T., Hahn, R., Killian, M.S., Asoh, H., Ono, S., and Schmuki, P.: Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere. Electrochim. Acta 62, 402 (2012).
31.Huang, H., Wang, C., Huang, J., Wang, X.M., Du, Y.K., and Yang, P.: Structure inherited synthesis of N-doped highly ordered mesoporous Nb2O5 as robust catalysts for improved visible light photoactivity. Nanoscale 6, 7274 (2014).
32.Gan, J.Y., Lu, X.H., and Tong, Y.X.: Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6, 7142 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed