Skip to main content Accessibility help
×
Home

Redox-active polymers (redoxmers) for electrochemical energy storage

  • Mengxi Yang (a1) (a2), Kewei Liu (a1), Ilya A. Shkrob (a1) and Chen Liao (a1) (a2)

Abstract

Polymer redox-active materials (redoxmers) have numerous applications in the emerging electrochemical energy storage systems due to their structural versatility, fast-cycling ability, high theoretical capacity as electrode materials, sustainability, and recyclability. This review examines recent developments in improving the cycling performance of such materials and provides a vista on the future research directions.

Copyright

Corresponding author

Address all correspondence to Chen Liao at liaoc@anl.gov

Footnotes

Hide All

Both authors contributed equally.

Footnotes

References

Hide All
1.Capuano, L.: International Energy Outlook, 2018 (accessed 7 November).
2.Gür, T.M.: Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energ. Environ. Sci. 11, 26962767 (2018).
3.Wang, W., Luo, Q., Li, B., Wei, X., Li, L., and Yang, Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970986 (2013).
4.Liang, Y., Tao, Z., and Chen, J.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742769 (2012).
5.Muench, S., Wild, A., Friebe, C., Häupler, B., Janoschka, T., and Schubert, U.S.: Polymer-based organic batteries. Chem. Rev. 116, 94389484 (2016).
6.Zhang, H., Armand, M., and Rojo, T.: Innovative polymeric materials for better rechargeable batteries: strategies from CIC Energigune. J. Electrochem. Soc. 166, A679A686 (2019).
7.Song, Z., Qian, Y., Gordin, M.L., Tang, D., Xu, T., Otani, M., Zhan, H., Zhou, H., and Wang, D.: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 1394713951 (2015).
8.Sasada, Y., Langford, S.J., Oyaizu, K., and Nishide, H.: Poly(norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Adv. 6, 4291142916 (2016).
9.Maniam, S., Oka, K., and Nishide, H.: N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability. MRS Commun. 7, 967973 (2017).
10.Schon, T.B., Tilley, A.J., Kynaston, E.L., and Seferos, D.S.: Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl. Mater. Inter. 9, 1563115637 (2017).
11.Tokue, H., Murata, T., Agatsuma, H., Nishide, H., and Oyaizu, K.: Charge–discharge with rocking-chair-type Li+ migration characteristics in a zwitterionic radical copolymer composed of TEMPO and trifluoromethanesulfonylimide with carbonate electrolytes for a high-rate Li-ion battery. Macromolecules 50, 19501958 (2017).
12.Suga, T., Konishi, H., and Nishide, H.: Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem. Comm. 17301732 (2007).
13.Karlsson, C., Suga, T., and Nishide, H.: Quantifying TEMPO redox polymer charge transport toward the organic radical battery. ACS Appl. Mater. Inter. 9, 1069210698 (2017).
14.Koshika, K., Chikushi, N., Sano, N., Oyaizu, K., and Nishide, H.: A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 12, 15731575 (2010).
15.Li, G., Zhang, B., Wang, J., Zhao, H., Ma, W., Xu, L., Zhang, W., Zhou, K., Du, Y., and He, G.: Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew. Chem. Int. Ed 58, 84688473 (2019).
16.Casado, N., Hernández, G., Veloso, A., Devaraj, S., Mecerreyes, D., and Armand, M.: PEDOT radical polymer with synergetic redox and electrical properties. ACS Macro Lett. 5, 5964 (2016).
17.Aldalur, I., Martinez-Ibañez, M., Piszcz, M., Zhang, H., and Armand, M.: Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries. Batteries Supercaps 1, 149159 (2018).
18.Xing, L., Li, W., Wang, C., Gu, F., Xu, M., Tan, C., and Yi, J.: Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113, 1659616602 (2009).
19.Grugeon, S., Jankowski, P., Cailleu, D., Forestier, C., Sannier, L., Armand, M., Johansson, P., and Laruelle, S.: Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. J. Power Sources 427, 7784 (2019).
20.Xu, G.-L., Liu, Q., Lau, K.K.S., Liu, Y., Liu, X., Gao, H., Zhou, X., Zhuang, M., Ren, Y., Li, J., Shao, M., Ouyang, M., Pan, F., Chen, Z., Amine, K., and Chen, G.: Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484494 (2019).
21.Zhou, D., Chen, Y., Li, B., Fan, H., Cheng, F., Shanmukaraj, D., Rojo, T., Armand, M., and Wang, G.: A stable quasi-solid-state sodium–sulfur battery. Angew. Chem. 130, 1032510329 (2018).
22.Castillo-Martínez, E., Carretero-González, J., and Armand, M.: Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries. Angew. Chem. Int. Ed. 53, 53415345 (2014).
23.Zhao, Q., Gaddam, R.R., Yang, D., Strounina, E., Whittaker, A.K., and Zhao, X.S.: Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta 265, 702708 (2018).
24.Bančič, T., Bitenc, J., Pirnat, K., Kopač Lautar, A., Grdadolnik, J., Randon Vitanova, A., and Dominko, R.: Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery. J. Power Sources 395, 2530 (2018).
25.Vizintin, A., Bitenc, J., Kopač Lautar, A., Pirnat, K., Grdadolnik, J., Stare, J., Randon-Vitanova, A., and Dominko, R.: Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Comm. 9, 661 (2018).
26.Pan, B., Huang, J., Feng, Z., Zeng, L., He, M., Zhang, L., Vaughey, J.T., Bedzyk, M.J., Fenter, P., Zhang, Z., Burrell, A.K., and Liao, C.: Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 6, 1600140 (2016).
27.Dong, H., Liang, Y., Tutusaus, O., Mohtadi, R., Zhang, Y., Hao, F., and Yao, Y.: Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 3, 782793 (2019).
28.Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K., and Pyun, J.: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries. ACS Macro Lett. 3, 229232 (2014).
29.Dirlam, P.T., Simmonds, A.G., Kleine, T.S., Nguyen, N.A., Anderson, L.E., Klever, A.O., Florian, A., Costanzo, P.J., Theato, P., Mackay, M.E., Glass, R.S., Char, K., and Pyun, J.: Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Adv. 5, 2471824722 (2015).
30.Wei, Y., Li, X., Xu, Z., Sun, H., Zheng, Y., Peng, L., Liu, Z., Gao, C., and Gao, M.: Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries. Polym. Chem. 6, 973982 (2015).
31.Liu, Z.J., Kong, L.B., Zhou, Y.H., and Zhan, C.M.: Polyanthra[1,9,8-b,c,d,e][4,10,5-b,c,d,e]bis-[1,6,6a(6a-S) trithia]pentalene-active material for cathode of lithium secondary battery with unusually high specific capacity. J. Power Sources 161, 13021306 (2006).
32.Preefer, M.B., Oschmann, B., Hawker, C.J., Seshadri, R., and Wudl, F.: High sulfur content material with stable cycling in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 1511815122 (2017).
33.Liu, Y., Haridas, A.K., Cho, K.-K., Lee, Y., and Ahn, J.-H.: Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J. Phys. Chem. C 121, 2617226179 (2017).
34.Bachman, J.C., Kavian, R., Graham, D.J., Kim, D.Y., Noda, S., Nocera, D.G., Shao-Horn, Y., and Lee, S.W.: Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nat. Commun. 6, 7040 (2015).
35.Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., and Duan, X.: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25, 57795784 (2013).
36.Oka, K., Kato, R., Oyaizu, K., and Nishide, H.: Poly(vinyldibenzothiophenesulfone): its redox capability at very negative potential toward an all-organic rechargeable device with high-energy density. Adv. Funct. Mater. 28, 1805858 (2018).
37.Xie, J., Wang, Z.L., Xu, Z.C.J., and Zhang, Q.C.: Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv. Energy Mater. 8, 1703509 (2018).
38.Nakahara, K., Iwasa, S., Satoh, M., Morioka, Y., Iriyama, J., Suguro, M., and Hasegawa, E.: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351354 (2002).
39.Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez-Martínez, L.M., and Armand, M.: Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 1500215027 (2018).
40.Appapillai, A.T., Mansour, A.N., Cho, J., and Shao-Horn, Y.: Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem. Mater. 19, 57485757 (2007).
41.Li, X., Liu, J., Banis, M.N., Lushington, A., Li, R., Cai, M., and Sun, X.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energ. Environ. Sci. 7, 768778 (2014).
42.Lee, K.-S., Myung, S.-T., Amine, K., Yashiro, H., and Sun, Y.-K.: Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J. Mater. Chem. 19, 19952005 (2009).
43.Yan, P., Zheng, J., Chen, T., Luo, L., Jiang, Y., Wang, K., Sui, M., Zhang, J.-G., Zhang, S., and Wang, C.: Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).
44.Slater, M.D., Kim, D., Lee, E., and Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947958 (2013).
45.Canepa, P., Bo, S.-H., Sai Gautam, G., Key, B., Richards, W.D., Shi, T., Tian, Y., Wang, Y., Li, J., and Ceder, G.: High magnesium mobility in ternary spinel chalcogenides. Nat. Chem. 8, 1759 (2017).
46.Incorvati, J.T., Wan, L.F., Key, B., Zhou, D., Liao, C., Fuoco, L., Holland, M., Wang, H., Prendergast, D., Poeppelmeier, K.R., and Vaughey, J.T.: Reversible magnesium intercalation into a layered oxyfluoride cathode. Chem. Mater. 28, 1720 (2016).
47.Yu, C., Wang, C., Liu, X., Jia, X., Naficy, S., Shu, K., Forsyth, M., and Wallace, G.G.: A cytocompatible robust hybrid conducting polymer hydrogel for use in a magnesium battery. Adv. Mater. 28, 93499355 (2016).
48.Jia, X., Wang, C., Ranganathan, V., Napier, B., Yu, C., Chao, Y., Forsyth, M., Omenetto, F.G., MacFarlane, D.R., and Wallace, G.G.: A biodegradable thin-film magnesium primary battery using silk fibroin–ionic liquid polymer electrolyte. ACS Energy Lett. 2, 831836 (2017).
49.Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.-M.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19 (2011).
50.Melot, B.C. and Tarascon, J.M.: Design and preparation of materials for advanced electrochemical storage. Acc. Chem. Rev. 46, 12261238 (2013).
51.Ji, X. and Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 98219826 (2010).
52.Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., and Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977980 (2006).
53.Mikhaylik, Y.V. and Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969A1976 (2004).
54.Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., and Nazar, L.F.: A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).
55.Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J.-G.: Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 7, 513537 (2014).
56.Liu, B., Zhang, J.-G., and Xu, W.: Advancing lithium metal batteries. Joule 2, 833845 (2018).
57.Yu, X. and Manthiram, A.: Electrode–electrolyte interfaces in lithium-based batteries. Energ. Environ. Sci. 11, 527543 (2018).
58.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).
59.Wei, H., Rodriguez, E.F., Best, A.S., Hollenkamp, A.F., Chen, D., and Caruso, R.A.: Chemical bonding and physical trapping of sulfur in mesoporous magnéli Ti4O7 microspheres for high-performance Li–S battery. Adv. Energy Mater. 7, 1601616 (2017).
60.Lei, D., Shi, K., Ye, H., Wan, Z., Wang, Y., Shen, L., Li, B., Yang, Q.-H., Kang, F., and He, Y.-B.: Progress and perspective of solid-state lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707570 (2018).
61.Lacey, M.J., Jeschull, F., Edström, K., and Brandell, D.: Porosity blocking in highly porous carbon black by PVdF binder and its implications for the Li–S system. J. Phys. Chem. C 118, 2589025898 (2014).
62.Cheng, Z., Pan, H., Zhong, H., Xiao, Z., Li, X., and Wang, R.: Porous organic polymers for polysulfide trapping in lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707597 (2018).
63.Schneider, H., Garsuch, A., Panchenko, A., Gronwald, O., Janssen, N., and Novák, P.: Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources 205, 420425 (2012).
64.Chung, W.J., Griebel, J.J., Kim, E.T., Yoon, H., Simmonds, A.G., Ji, H.J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Somogyi, Á, Theato, P., Mackay, M.E., Sung, Y.-E., Char, K., and Pyun, J.: The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).
65.Griebel, J.J., Li, G., Glass, R.S., Char, K., and Pyun, J.: Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J. Polym. Sci. Pol. Chem. 53, 173177 (2015).
66.Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E., and Zentel, R.: Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium–sulfur batteries. Chem. Mater. 27, 70117017 (2015).
67.Wu, F., Chen, S., Srot, V., Huang, Y., Sinha, S.K., van Aken, P.A., Maier, J., and Yu, Y.: A sulfur–limonene-based electrode for lithium–sulfur batteries: high-performance by self-protection. Adv. Mater. 30, 1706643 (2018).
68.Berk, H., Balci, B., Ertan, S., Kaya, M., and Cihaner, A.: Functionalized polysulfide copolymers with 4-vinylpyridine via inverse vulcanization. Mater. Today Commun. 19, 336341 (2019).
69.Doeff, M.M., Lerner, M.M., Visco, S.J., and De Jonghe, L.C.: The use of polydisulfides and copolymeric disulfides in the Li/PEO/SRPE battery system. J. Electrochem. Soc. 139, 20772081 (1992).
70.Kim, H., Lee, J., Ahn, H., Kim, O., and Park, M.J.: Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nat. Commun. 6, 7278 (2015).
71.Trofimov, B.A., Vasil'tsov, A.M., Petrova, O.V., Mikhaleva, A.I., Myachina, G.F., Korzhova, S.A., Skotheim, T.A., Mikhailik, Y.V., and Vakul'skaya, T.I.: Sulfurization of polymers. 6. Poly(vinylene polysulfide), poly(thienothiophene), and related structures from polyacetylene and elemental sulfur. Russ. Chem. Bull. 51, 17091714 (2002).
72.Fanous, J., Wegner, M., Grimminger, J., Andresen, Ä, and Buchmeiser, M.R.: Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 23, 50245028 (2011).
73.Wei, S., Ma, L., Hendrickson, K.E., Tu, Z., and Archer, L.A.: Metal–sulfur battery cathodes based on PAN–sulfur composites. J. Am. Chem. Soc. 137, 1214312152 (2015).
74.Lau, K.-C., Shkrob, I.A., Dietz Rago, N.L., Connell, J.G., Phelan, D., Hu, B., Zhang, L., Zhang, Z., and Liao, C.: Improved performance through tight coupling of redox cycles of sulfur and 2,6-polyanthraquinone in lithium–sulfur batteries. J. Mater. Chem. A 5, 2410324109 (2017).
75.DeBlase, C.R., Silberstein, K.E., Truong, T.-T., Abruña, H.D., and Dichtel, W.R.: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 1682116824 (2013).
76.Zeigler, D.F., Candelaria, S.L., Mazzio, K.A., Martin, T.R., Uchaker, E., Suraru, S.-L., Kang, L.J., Cao, G., and Luscombe, C.K.: N-Type hyperbranched polymers for supercapacitor cathodes with variable porosity and excellent electrochemical stability. Macromolecules 48, 51965203 (2015).
77.Zhou, H., Zhi, X., and Zhai, H.-J.: Promoted supercapacitive performances of electrochemically synthesized poly(3,4-ethylenedioxythiophene) incorporated with manganese dioxide. J. Mater. Sci. Mater. Elect. 29, 39353942 (2018).
78.Zhou, H., Zhai, H.-J., and Han, G.: Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes. J. Power Sources 323, 125133 (2016).
79.Hatakeyama-Sato, K., Wakamatsu, H., Yamagishi, K., Fujie, T., Takeoka, S., Oyaizu, K., and Nishide, H.: Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small 15, 1805296 (2019).
80.Zhu, X., Zhao, R., Deng, W., Ai, X., Yang, H., and Cao, Y.: An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte. Electrochim. Acta 178, 5559 (2015).
81.Weng, Y., Xu, S., Huang, G., and Jiang, C.: Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1−xMgx]O2 prepared from spent lithium ion batteries. J. Hazard. Mater. 246–247, 163172 (2013).
82.Yang, Y., Huang, G., Xu, S., He, Y., and Liu, X.: Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165, 390396 (2016).
83.Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., and Li, H.: Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manage. 34, 10511058 (2014).
84.Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M.: From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348355 (2008).
85.Armand, M., and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).
86.Hoefling, A., Lee, Y.J., and Theato, P.: Sulfur-based polymer composites from vegetable oils and elemental sulfur: a sustainable active material for Li–S batteries. Macromol. Chem. Phys. 218, 1600303 (2017).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed