Skip to main content Accessibility help
×
Home

Rejuvenation of soft material–actuator

  • Aslan Miriyev (a1), Cesar Trujillo (a1), Gabriela Caires (a1) and Hod Lipson (a1)

Abstract

Akin to the natural tissues, soft artificial muscles possess a life cycle limited by aging and degradation phenomena. Here, we propose a rejuvenation method aimed at silicone-ethanol soft composite actuators, in which ethanol escape occurs during prolonged actuation, thus compromising their performance. The rejuvenation is achieved by immersion of the material–actuator in ethanol, allowing its diffusion into the silicone-based material until saturation. Repeatable rejuvenation of a soft robot, based on the soft material–actuator, resulted in retention of up to 100% of its functionality. Thus, we suggest that this method may be used for the rejuvenation of soft artificial muscles and material–actuators.

Copyright

Corresponding author

Address all correspondence to Aslan Miriyev at aslan.miriyev@columbia.edu

References

Hide All
1.Rus, D., and Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467 (2015).
2.Miriyev, A., Stack, K., and Lipson, H.: Soft material for soft actuators. Nat. Commun. 8, 1 (2017).
3.Sridar, S., Majeika, C.J., Schaffer, P., Bowers, M., Ueda, S., Barth, A.J., Sorrells, J.L., Wu, J.T., Hunt, T.R., and Popovic, M.: Hydro Muscle – a novel soft fluidic actuator. In 2016 IEEE Int. Conf. on Robotics and Automation (IEEE, 2016), pp. 40144021.
4.Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., and Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. USA 108, 20400 (2011).
5.Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., and Whitesises, G.M.: A resilient, untethered soft robot. Soft Robot. 1, 213 (2014).
6.Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., and Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Rob. Auton. Syst. 73, 135 (2015).
7.Marchese, A.D., Katzschmann, R.K., and Rus, D.: A Recipe for soft fluidic elastomer robots. Soft Robot. 2, 7 (2015).
8.De Greef, A., Lambert, P., and Delchambre, A.: towards flexible medical instruments: Review of flexible fluidic actuators. Precis. Eng. 33, 311 (2009).
9.Chou, C.-P., and Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12, 90 (1996).
10.Obiajulu, S. C., Roche, E. T., Pigula, F. A., and Walsh, C. J.: In 37th Mechanisms and Robotics Conf. (ASME, 2013), Vol. 6A p. V06AT07A009.
11.Wirekoh, J., and Park, Y.-L.: Design of flat pneumatic artificial muscles. Smart Mater. Struct. 26, 35009 (2017).
12.Nguyen, C. T., Phung, H., Nguyen, T. D., Jung, H., and Choi, H. R.: Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sens. Actuators A Phys. 267, 505 (2017).
13.O'Halloran, A., O'Malley, F., and McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 1 (2008).
14.Gu, G.-Y., Zhu, J., Zhu, L.-M., and Zhu, X.: A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12, 11003 (2017).
15.Martinez, R. V., Glavan, A. C., Keplinger, C., Oyetibo, A. I., and Whitesides, G. M.: Soft Actuators and Robots that Are Resistant to Mechanical Damage. Adv. Funct. Mater. 24, 3003 (2014).
16.Terryn, S., Mathijssen, G., Brancart, J., Lefeber, D., Van Assche, G., and Vanderborght, B.: Development of a self-healing soft pneumatic actuator: a first concept. Bioinspir. Biomim. 10, 46007 (2015).
17.Shepherd, R. F., Stokes, A. A., Nunes, R. M. D., and Whitesides, G. M.: Soft machines that are resistant to puncture and that self seal. Adv. Mater. 25, 6709 (2013).
18.Bilodeau, R. A., and Kramer, R. K.: Self-healing and damage resilience for soft robotics: a review. Front. Robot. AI 4, 48 (2017).
19.Hunt, S., McKay, T. G., and Anderson, I. A.: A self-healing dielectric elastomer actuator. Appl. Phys. Lett. 104, 113701 (2014).
20.Acome, E., Mitchell, S. K., Morrissey, T. G., Emmett, M. B., Benjamin, C., King, M., Radakovitz, M., and Keplinger, C.: Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61 (2018).
21.Pourazadi, S., Shagerdmootaab, A., Chan, H., Moallem, M., and Menon, C.: On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater. Struct. 26, 115007 (2017).
22.Miriyev, A., Caires, G., and Lipson, H.: Functional properties of silicone/ethanol soft-actuator composites. Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.02.057
23.Tamai, Y., Tanaka, H., and Nakanishi, K.: Molecular simulation of permeation of small penetrants through membranes. 1. diffusion coefficients. Macromolecules 27, 4498 (1994).
24.Okamoto, K., Nishioka, S., Tsuru, S., Sasaki, S., Tanaka, K., and Kita, H.: Sorption and pervaporation of water-organic liquid mixtures through polydimethylsiloxane. Kobunshi Ronbunshu 45, 993 (1988).
25.Comyn, J.: In Polym. Permeability (Springer, Dordrecht, Netherlands, 1985), pp. 110.
26.Crank, J.: The Mathematics of Diffusion (Oxford University Press, New York, 1975).
27.Jones, F.: In Theory Color. Text (Society of Dyers and Colorists, Bradford, West Yorkshire, UK, 1989), pp. 373427.
28.Crank, J., and Park, G. S.: Diffusion in Polymer, First Edit (Academic Press, London and New York, 1968).
29.Karimi, M.: In Mass Transfer in Chemical Engineering Processes (InTech, Rijeka, Croatia, 2011).
Type Description Title
UNKNOWN
Supplementary materials

Miriyev et al. supplementary material
Miriyev et al. supplementary material 1

 Unknown (14.8 MB)
14.8 MB

Rejuvenation of soft material–actuator

  • Aslan Miriyev (a1), Cesar Trujillo (a1), Gabriela Caires (a1) and Hod Lipson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed