Skip to main content

Sodium-doped oriented zinc oxide nanorod arrays: insights into their aqueous growth design, crystal structure, and optical properties

  • Amir Hassanpour (a1) (a2) (a3), Shaohua Shen (a3) and Pablo Bianucci (a1)

Cation doping is a practical way of engineering the optical properties of one-dimensional semiconductor nanomaterials, such as their band gap. We have grown zinc oxide (ZnO) nanorods doped with sodium cations (Na+) using a hydrothermal method at temperatures as low as 60 °C. We have investigated the effect of different concentrations of Na+ on structural and optical properties and morphology of the ZnO nanostructures. We have also simulated and discussed the chemical route of formation of doped and undoped ZnO nanorods. We found that, for low-temperature hydrothermal doping of ZnO nanorods with Na+, the optimum concentration ratio of zinc to sodium precursors is 1:10.

Corresponding author
Address all correspondence to Pablo Bianucci at
Hide All
1.Hsu, C.L. and Chang, S.J.: Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application. Small 10, 4562 (2014).
2.Shaban, M. and El Sayed, A.: Effects of lanthanum and sodium on the structural, optical and hydrophilic properties of sol–gel derived ZnO films: a comparative study. Mater. Sci. Semicond. Process. 41, 323 (2016).
3.Lee, E.-C. and Chang, K.: Possible p-type doping with group-I elements in ZnO. Phys. Rev. B 70, 115210 (2004).
4.Polat, İ.: Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 25, 3721 (2014).
5.Lee, W.C., Canciani, G.E., Alwhshe, B.O., and Chen, Q.: Enhanced photoelectrochemical water oxidation by Zn x M y O (M = Ni, Co, K, Na) nanorod arrays. Int. J. Hydrog. Energy 41, 123 (2016).
6.Wu, C. and Huang, Q.: Synthesis of Na-doped ZnO nanowires and their photocatalytic properties. J. Lumin. 130, 2136 (2010).
7., J., Huang, K., Chen, X., Zhu, J., Meng, F., Song, X., and Sun, Z.: Enhanced photo-induced hydrophilicity of the sol–gel-derived ZnO thin films by Na-doping. Appl. Surf. Sci. 257, 2086 (2011).
8.Hassanpour, A., Guo, P., Shen, S., and Bianucci, P.: The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. Nanotechnology 28, 435707 (2017).
9.Yue, L., Zhang, Z., Ma, Y., and Zhang, W.: Effect of Na doping on the nanostructures and electrical properties of ZnO nanorod arrays. J. Nanomater. 2016, 3040536 (2016).
10.Jayanthi, K., Chawla, S., Joshi, A.G., Khan, Z.H., and Kotnala, R.: Fabrication of luminescent, magnetic hollow core nanospheres and nanotubes of Cr-doped ZnO by inclusive coprecipitation method 1. J. Phys. Chem. C 114, 18429 (2010).
11.Yamabi, S. and Imai, H.: Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12, 3773 (2002).
12.Greene, L.E., Yuhas, B.D., Law, M., Zitoun, D., and Yang, P.: Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535 (2006).
13.Ko, W., Lee, S., Baek, G., and Hong, J.P.: Na mole concentration dependence on optical p-type behaviors of Na-doped ZnO nanowires. Curr. Appl. Phys. 14, S103 (2014).
14.Gu, W., Zhang, W., Li, X., Zhu, H., Wei, J., Li, Z., Shu, Q., Wang, C., Wang, K., Shen, W., Kang, F., and Wu, D.: Graphene sheets from worm-like exfoliated graphite. J. Mater. Chem. 19, 3367 (2009).
15.Wang, L., Wu, F., Tian, D., Li, W., Fang, L., Kong, C., and Zhou, M.: Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method. J. Alloys Compd. 623, 367 (2015).
16.Ye, Z., Wang, T., Wu, S., Ji, X., and Zhang, Q.: Na-doped ZnO nanorods fabricated by chemical vapor deposition and their optoelectrical properties. J. Alloys Compd. 690, 189 (2017).
17.Wang, Y., Luo, X., Tseng, L.-T., Ao, Z., Li, T., Xing, G., Bao, N., Suzukiis, K., Ding, J., and Li, S.: Ferromagnetism and crossover of positive magnetoresistance to negative magnetoresistance in Na-doped ZnO. Chem. Mater. 27, 1285 (2015).
18.Chien, C.-T., Wu, M.-C., Chen, C.-W., Yang, H.-H., Wu, J.-J., Su, W.-F., Lin, C.-S., and Chen, Y.-F.: Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod. Appl. Phys. Lett. 92, 223102 (2008).
19.Tabib, A., Bouslama, W., Sieber, B., Addad, A., Elhouichet, H., Férid, M., and Boukherroub, R.: Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis. Appl. Surf. Sci. 396, 1528 (2017).
20.Kumar, S. and Thangavel, R.: Structural and optical properties of Na doped ZnO nanocrystalline thin films synthesized using sol–gel spin coating technique. J. Solgel Sci. Technol. 67, 50 (2013).
21.Zhang, H.-W., Wei, Z.-R., Li, Z.-Q., and Dong, G.-Y.: Room-temperature ferromagnetism in Fe-doped, Fe-and Cu-codoped ZnO diluted magnetic semiconductor. Mater. Lett. 61, 3605 (2007).
22.Boqian, Y., Peterxian, F., Ashok, K., Katiyar, R.S., and Marc, A.: Structural and optical properties of N-doped ZnO nanorod arrays. J. Phys. D: Appl. Phys. 42, 195402 (2009).
23.Yang, X.-J., Miao, X.-Y., Xu, X.-L., Xu, C.-M., Xu, J., and Liu, H.-T.: Structure, X-ray photoelectron spectroscopy and photoluminescence properties of highly ordered ZnO microrods. Opt. Mater. 27, 1602 (2005).
24.Chu, J., Peng, X., Dasari, K., Palai, R., and Feng, P.: The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level. Mater. Res. Bull. 54, 73 (2014).
25.Lupan, O., Chow, L., Ono, L.K., Cuenya, B.R., Chai, G., Khallaf, H., Park, S., and Schulte, A.: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. J. Phys. Chem. C 114, 12401 (2010).
26.Zhang, R., Yin, P.-G., Wang, N., and Guo, L.: Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865 (2009).
27.Kong, Y., Yu, D., Zhang, B., Fang, W., and Feng, S.: Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407 (2001).
28.Xie, R., Sekiguchi, T., Ishigaki, T., Ohashi, N., Li, D., Yang, D., Liu, B., and Bando, Y.: Enhancement and patterning of ultraviolet emission in ZnO with an electron beam. Appl. Phys. Lett. 88, 134103 (2006).
29.Jin, B.J., Im, S., and Lee, S.Y.: Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 366, 107 (2000).
30.Ong, H. and Du, G.: The evolution of defect emissions in oxygen-deficient and-surplus ZnO thin films: the implication of different growth modes. J. Cryst. Growth 265, 471 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Hassanpour et al. supplementary material
Hassanpour et al. supplementary material 1

 Word (435 KB)
435 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed