Skip to main content
×
×
Home

Strongly scale-dependent charge transport from interconnections of silicon quantum dots and nanowires

  • Serim Ilday (a1)
Abstract
Abstract

We present the first characterization of strongly scale-dependent charge transport of a unique, hierarchical complex topology: an interconnected random network of silicon quantum dots (QDs) and nanowires. We show that this specific topology has different charge transport characteristics on the nanoscale and the microscale: photogenerated charge carriers tend to be confined inside the QDs and externally injected charge carriers flow preferably along the nanowires. The former enables expression of quantum confinement properties, and the latter mainly contributes to the good electrical conduction on the microscale. Our findings strongly suggest that this multifunctionality can be controlled and used in photovoltaic device applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Strongly scale-dependent charge transport from interconnections of silicon quantum dots and nanowires
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Strongly scale-dependent charge transport from interconnections of silicon quantum dots and nanowires
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Strongly scale-dependent charge transport from interconnections of silicon quantum dots and nanowires
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Serim Ilday at serim@bilkent.edu.tr
References
Hide All
1. Wegst U.G.K., Bai H., Saiz E., Tomsia A.P., and Ritchie R.O.: Bioinspired structural materials. Nat. Mater. 14, 2336 (2015).
2. Vincent J.F.V.: Biomimetic materials. J. Mater. Res. 23, 31403147 (2008).
3. Ilday S., Ilday F.Ö., Hübner R., Prosa T.J., Martin I., Nogay G., Kabacelik I., Mics Z., Bonn M., Turchinovich D., Toffoli H., Toffoli D., Friedrich D., Schmidt B., Heinig K.-H., and Turan R.: Multiscale self-assembly of silicon quantum dots into an anisotropic three-dimensional random network. Nano Lett. 16, 19421948 (2016).
4. Cölfen H. and Antonietti M.: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 55765591 (2005).
5. Escarcega-Bobadilla M.V., Zelada-Guillen G.A., Pyrlin S.V., Wegrzyn M., Ramos M.M.D., Gimenez E., Stewart A., Maier G., and Kleij A.W.: Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nat. Commun. 4, 2648 (2013).
6. Balberg I., Savir E., Jedrzejewski J., Nassiopoulou A.G., and Gardelis S.: Fundamental transport processes in ensembles of silicon quantum dots. Phys. Rev. B 75, 235329 (2007).
7. Abeles B., Pinch H.L., and Gittleman J.I.: Percolation conductivity in W-Al2O3 granular metal films. Phys. Rev. Lett. 35, 247 (1975).
8. Kastner M.A.: The single-electron transistor. Rev. Mod. Phys. 64, 849858 (1992).
9. Gleiter H.: Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 129 (2000).
10. Priolo F., Gregorkiewicz T., Galli M., and Krauss T.F.: Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 1932 (2014).
11. Balberg I., Jedrzejewski J., and Savir E.: Electrical transport in three-dimensional ensembles of silicon quantum dots. Phys. Rev. B 83, 035318 (2011).
12. Balberg I.: Tunnelling and percolation in lattices and the continuum. J. Phys. D: Appl. Phys. 42, 064003 (2009).
13. Yan R., Gargas D., and Yang P.: Nanowire photonics. Nat. Photonics 3, 569576 (2009).
14. Zhang M. and Shi J.-J.: Influence of pressure on exciton states and interband optical transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization and dielectric mismatch. J. Appl. Phys. 111, 113516 (2012).
15. Leschkies K.S., Divakar R., Basu J., Enache-Pommer E., Boercker J.E., Carter C.B., Kortshagen U.R., Norris D.J., and Aydil E.S.: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 17931798 (2007).
16. Dasgupta N.P., Jung H.J., Trejo O., McDowell M.T., Hryciw A., Brongersma M., Sinclair R., and Prinz F.B.: Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett. 11, 934940 (2011).
17. Samanta A. and Das D.: SiO x nanowires with intrinsic nc-Si quantum dots: the enhancement of the optical absorption and photoluminescence. J. Mater. Chem. C 1, 6623 (2013).
18. Nie Z., Petukhova A., and Kumacheva E.: Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 1525 (2010).
19. Cox T.I., Simons A.J., Loni A., Calcott P.D.J., Canham L.T., Uren M.J., and Nash K.J.: Modulation speed of an efficient porous silicon light emitting device. J. Appl. Phys. 86, 27642773 (1999).
20. Keles U., Cakan A., and Bulutay C.: Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires. J. Appl. Phys. 117, 064308 (2015).
21. Delerue C., Lannoo M., Allan G., Martin E., Mihalcescu I., Vial J. C., Romestain R., Muller F., and Bsiesy A.: Auger and Coulomb charging effects in semiconductor nanocrystallites. Phys. Rev. Lett. 75, 2228 (1995).
22. Ossicini S., Pavesi L., and Priolo F.: Light Emitting Silicon for Microphotonics (Springer-Verlag, Berlin, 2003).
23. Photopoulos P. and Nassiopoulou A.G.: Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers. Appl. Phys. Lett. 77, 1816 (2000).
24. Mihalcescu I., Vial J.C., Bsiesy A., Muller F., Romestain R., Martin E., Delerue C., Lannoo M., and Allan G.: Saturation and voltage quenching of porous-silicon luminescence and the importance of the Auger effect. Phys. Rev. B 51, 17605 (1995).
25. Shah A., Thin-Film Silicon Solar Cells (EPFL Press, Lausanne, 2010).
26. Pavesi L. and Turan R., Si Nanocrystals: Fundamentals, Synthesis, and Applications (Wiley-VCH Verlag GmbH & Co., Berlin, 2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Ilday supplementary material
Ilday supplementary material 1

 Word (21 KB)
21 KB

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 203 *
Loading metrics...

* Views captured on Cambridge Core between 7th September 2017 - 18th January 2018. This data will be updated every 24 hours.